First neutrino results from the Dark Energy Spectroscopic Instrument (DESI)

On behalf of the DESI Collaboration

Willem Elbers Institute for Computational Cosmology, Durham University 20 June 2024

Neutrino 2024

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 72 Participating Institutions!

Complementary measurements

U.S. Department of Energy Office of Science

Cosmology and experiments measure neutrino properties in complementary ways.

Number of neutrino species:

 $N_{\nu} = 2.9963 \pm 0.0074$ $N_{\rm eff} = 2.98 \pm 0.20 \ (\rm CMB)$ Sum of neutrino masses:

$$\sum m_{\nu} > \begin{cases} 0.058 \,\text{eV} & \text{(NO)} \\ 0.10 \,\text{eV} & \text{(IO)} \end{cases}$$
$$\sum m_{\nu} < 0.21 \,\text{eV} & \text{(CMB)} \end{cases}$$

Progress on neutrino masses

U.S. Department of Energy Office of Science

The distance-redshift relation

The distance-redshift relation depends on the energy density of various matter components, including massive neutrinos:

$$D_{\mathrm{M}}(z) = \frac{c}{H_0} \int_0^z \mathrm{d}z' \frac{H_0}{H(z')},$$

The distance-redshift relation

U.S. Department of Energy Office of Science

Baryon Acoustic Oscillations (BAO)

U.S. Department of Energy Office of Science

The Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science

DESI is a fiber-fed multi-object spectrograph, installed on the Mayall 4-meter telescope.

It uses 5000 robotic arms to position fibers on the focal plane.

The fibers are fed to ten 3-channel spectrographs.

The Dark Energy Spectroscopic Instrument

Creating a 3D map of the Universe

BAO measurements

DESI BAO and Dark Energy

U.S. Department of Energy Office of Science

Dark energy has a negative pressure:

Simplest case:

$$P = w\rho$$
 $w = -1$

Introducing a time-varying equation of state:

$$w(a) = w_0 + w_a(1-a)$$

Preference over ΛCDM :

DESI alone: 1.50

DESI + CMB: 2.6σ

DESI BAO and Dark Energy

U.S. Department of Energy Office of Science

First neutrino results from DESI

Constraints on the sum of neutrino masses

U.S. Department of Energy Office of Science

Constraints on the sum of neutrino masses

U.S. Department of Energy Office of Science

Progress on neutrino masses

U.S. Department of Energy Office of Science

Constraints on the sum of neutrino masses

U.S. Department of Energy Office of Science

From CMB:

 $\sum m_{\nu} < 0.21 \,\mathrm{eV}$

From CMB + DESI BAO:

$$\sum m_{\nu} < 0.072 \,\mathrm{eV}$$

(Both at 95%)

Constraints on the sum of neutrino masses

U.S. Department of Energy Office of Science

From CMB:

 $\sum m_{\nu} < 0.21 \,\mathrm{eV}$

From CMB + DESI BAO:

$$\sum m_{\nu} < 0.072 \,\mathrm{eV}$$

From CMB + DESI BAO + Other Background:

Dependence on prior

U.S. Department of Energy Office of Science

Baseline constraint:

$$\sum m_{\nu} < 0.072 \,\mathrm{eV}$$

With oscillation priors:

Normal ordering:

$$\sum m_{\nu} < 0.113 \,\mathrm{eV}$$

Inverted ordering:

$$\sum m_{\nu} < 0.145 \,\mathrm{eV}$$

See also:

Relaxing the prior

U.S. Department of Energy Office of Science

Introduce an effective neutrino mass, $\sum m_{\nu,\text{eff}}$, that coincides with the physical $\sum m_{\nu}$ for $\sum m_{\nu,\text{eff}} \geq 0$ and extrapolate to negative values in data space.

CMB temperature power spectrum

U.S. Department of Energy Office of Science

CMB temperature power spectrum

U.S. Department of Energy Office of Science

Isotropic BAO measurements

U.S. Department of Energy Office of Science

Dark energy and neutrino masses

U.S. Department of Energy Office of Science

Tension with oscillations reduced to $<1\sigma$

Returning to the physical sum of neutrino masses w_0w_a CDM bound:

$$\sum m_{\nu} < 0.195 \,\mathrm{eV}$$

CMB temperature power spectrum

U.S. Department of Energy Office of Science

Isotropic BAO measurements

U.S. Department of Energy Office of Science

Beyond DESI Year 1 BAO

- Full-shape analysis of P(k) from the Year 1 sample.
- Data collection for Year 3 completed. Look out for the new BAO results.
- Beyond 2-point statistics will provide additional constraining power.

• Constraint from CMB + DESI BAO for ΛCDM:

- Relaxing the prior and introducing an effective neutrino mass, we find a ~3σ tension with neutrino oscillations.
- This tension is significantly reduced in the time-evolving (w₀w_a) dark energy model, for which

$$\sum m_{\nu} < 0.195 \,\mathrm{eV}$$