What cosmology can tell us about neutrinos

Maria Archidiacono

UNIVERSITÀ DEGLI STUDI DI MILANO

XXXI International Conference on Neutrino Physics and Astrophysics June 16-22, 2024, Milan

- → Direct detection not in the near future
- → Footprints in cosmological observables

The duality of the $\ensuremath{\text{CvB}}$

Bounds on new light particles (Δ N_{eff})

 $N_{eff} = N_{eff}^{SM} (=3.044) + \Delta N_{eff}$

Euclid Collaboration: Archidiacono et al. (2024)

The duality of the $\ensuremath{\text{CvB}}$

The duality of the $\ensuremath{\text{CvB}}$

Late times (after CMB formation): neutrinos as matter (contributing to dark matter as hot dark matter)

• Sum of neutrino mass
$$~\Omega_
u h^2 = rac{\sum m_{
u,i}}{93.12 {
m eV}}~$$
 [Mangano et al. (2005), Froustey et al. (2020)]

not individual masses [Archidiacono et al. (2020)]

Detecting the neutrino mass in the CvB

Neutrino mass probes: CMB

Neutrino mass constraints: CMB

Neutrino mass constraints: CMB

Neutrino mass probes: LSS

After the non-relativistic transition (after CMB formation), neutrino free-stream $d_{FS,i} \sim 1 \operatorname{Gpc} \frac{eV}{m_{\nu,i}}$

CDM

$$m_{
u} = 0.5 \, eV$$

Villaescusa Navarro et al. (2013)

Neutrino mass probes: LSS

- Massive neutrinos do not cluster
- Massive neutrinos slow down the growth of CDM perturbations
 - \circ Massless neutrino Universe $\delta^{m_{
 u}=0}_{
 m cdm} \propto a$
 - \circ Massive neutrino Universe $\delta^{m_{
 u}
 eq 0}_{
 m cdm} \propto a^{1-rac{3}{5}rac{\Omega_{
 u}}{\Omega_{m}}}$

Neutrino mass constraints: CMB+LSS

16

Neutrino mass constraints: CMB+LSS

Euclid in a nutshell

- **ESA** M2 space mission in the framework of the Cosmic Vision program
- Launch July 1st 2023. Duration > 6 years
- 1.2m telescope with two instruments: Visible Imager (VIS) and Near Infrared Spectrometer and Photometer (NISP)
- Wide survey (14.000 deg²) and deep survey (40 deg² in 3 different fields)
- Measurements of over 1 billion images and more than 30 millions spectra of galaxies out to z>2
- Main scientific objectives: Dark Energy, Dark Matter, and General Relativity
- Primary probes: Galaxy Clustering and Weak Lensing

 \rightarrow 1% accuracy on P(k)

Neutrino mass probes: LSS

- Massive neutrinos do not cluster
- Massive neutrinos slow down the growth of CDM perturbations
 - \circ Massless neutrino Universe $\delta^{m_{
 u}=0}_{
 m cdm} \propto a$
 - \circ Massive neutrino Universe $\delta_{
 m cdm}^{m_
 u
 eq 0} \propto a^{1-rac{3}{5}rac{\Omega_
 u}{\Omega_m}}$

Neutrino mass probes: LSS

- Massive neutrinos do not cluster
 Massive neutrinos slow down the growth of CDM perturbations
 - \circ Massless neutrino Universe $\delta^{m_{
 u}=0}_{
 m cdm} \propto a$
 - \circ Massive neutrino Universe $\delta^{m_
 u
 eq 0}_{
 m cdm} \propto a^{1-rac{3}{5}rac{\Omega_
 u}{\Omega_m}}$

Known unknowns (systematics, etc.)

Neutrino mass constraints: the future

 $\Lambda \text{CDM} + \sum m_{\nu}$

Euclid Collaboration: Archidiacono et al. (2024)

Neutrino mass constraints: the future

Neutrino mass constraints: the future

Neutrino mass ordering

Constraints derived under the assumption $m_1=m_2=m_3$ (degenerate hierarchy, DH)

Qian et al. 2015 Inverted Ordering v_{e} ν_{μ} ν_{τ} Normal Ordering 0.3 Normal Inverted Planck (TT,TE,EE+lensing) ν₃⊳ v_2 Sum of neutrino masses [eV] Euclid v_1 Δm_{atm}^2 Planck+ext. 0.1 v_3 Δm_{sol}^2 Euclid+CMB-S4+LiteBIRD 0.03Min. Σm_v (NH) = 0.058 eV; Min. Σm_v (IH)= 0.100 eV *Euclid*+*Planck*

0.001

Neutrino Mass Hierarchy

Input fiducial value of the forecast Σm_{ν} = 60 meV

Lightest neutrino mass [eV]

0.01

Euclid Collaboration: Archidiacono et al. (2024)

0.3

0.1

Neutrino mass ordering

Take home message

- Euclid in combination with upcoming CMB surveys can achieve a 4σ detection of Σm_v , even if Σm_v = 0.058 eV
- Cosmology is not directly sensitive to the neutrino mass ordering, like ground-based experiments, however, if $\Sigma m_v = 0.058 \text{ eV}$, then future cosmological constraints can exclude IH at about 2σ
- Cosmology is more sensitive than current and planned β-decay experiments. Caveat: cosmology is model dependent, and it requires that systematic effects are under control. Complementarity: cosmology is not sensitive to the Dirac/Majorana nature, mixing angles.
- Open question: What if there is a tension between the Cosmos and the Lab? See talk by Stefano Gariazzo

Stay tuned

