

Other present and future 0vßß experiments

The University of Manchester

1

Roxanne Guénette

NEUTRINO 2024 18 June 2024

Importance of searching for 0vßß

See J. Menendez's talk

Importance of searching for 0vββ

Please find Majorana neutrinos!

How to search for $0\nu\beta\beta$

- Isotope choice:
 - Highest $Q_{\beta\beta}$ value (lower backgrounds)
 - Highest abundance (lower cost)

Isotope	Daughter	$Q_{\beta\beta}{}^{\mathbf{a}}$	$f_{\rm nat}{}^{\rm b}$
		$[\mathrm{keV}]$	[%]
^{48}Ca	$^{48}\mathrm{Ti}$	4267.98(32)	0.187(21)
76 Ge	76 Se	2039.061(7)	7.75(12)
82 Se	82 Kr	2997.9(3)	8.82(15)
$^{96}\mathrm{Zr}$	^{96}Mo	3356.097(86)	2.80(2)
^{100}Mo	100 Ru	3034.40(17)	9.744(65)
^{116}Cd	116 Sn	2813.50(13)	7.512(54)
$^{130}\mathrm{Te}$	130 Xe	2527.518(13)	34.08(62)
136 Xe	136 Ba	2457.83(37)	8.857(72)
150 Nd	150 Sm	3371.38(20)	5.638(28)

M. Agostini, et al., (2023) Rev. Mod. Phys. 95, 025002

How to search for $0\nu\beta\beta$

- Isotope choice:
 - Highest Q_{BB} value (lower backgrounds) •
 - Highest abundance (lower cost)

Isotope	Daughter	$Q_{\beta\beta}{}^{\mathbf{a}}$	$f_{\rm nat}{}^{\rm b}$
		$[\mathrm{keV}]$	[%]
48 Ca	$^{48}\mathrm{Ti}$	4267.98(32)	0.187(21)
$^{76}\mathrm{Ge}$	76 Se	2039.061(7)	7.75(12)
82 Se	82 Kr	2997.9(3)	8.82(15)
$^{96}\mathrm{Zr}$	^{96}Mo	3356.097(86)	2.80(2)
^{100}Mo	100 Ru	3034.40(17)	9.744(65)
^{116}Cd	116 Sn	2813.50(13)	7.512(54)
$^{130}\mathrm{Te}$	130 Xe	2527.518(13)	34.08(62)
136 Xe	136 Ba	2457.83(37)	8.857(72)
150 Nd	150 Sm	3371.38(20)	5.638(28)

- Detector technology choice:
 - Best energy resolution
 - Lowest backgrounds
 - Most scalable

M. Agostini, et al., (2023) Rev. Mod. Phys. 95, 025002

Drawings: Laura Manenti 11

How to search for $0\nu\beta\beta$

- Isotope choice:
 - Highest $Q_{\beta\beta}$ value (lower backgrounds)
 - Highest abundance (lower cost)

Isotope	Daughter	$Q_{\beta\beta}{}^{\mathbf{a}}$	$f_{\rm nat}{}^{\rm b}$
		$[\mathrm{keV}]$	[%]
48 Ca	48 Ti	4267.98(32)	0.187(21)
$^{76}\mathrm{Ge}$	76 Se	2039.061(7)	7.75(12)
82 Se	82 Kr	2997.9(3)	8.82(15)
$^{96}\mathrm{Zr}$	^{96}Mo	3356.097(86)	2.80(2)
^{100}Mo	100 Ru	3034.40(17)	9.744(65)
^{116}Cd	116 Sn	2813.50(13)	7.512(54)
$^{130}\mathrm{Te}$	130 Xe	2527.518(13)	34.08(62)
136 Xe	136 Ba	2457.83(37)	8.857(72)
150 Nd	150 Sm	3371.38(20)	5.638(28)

- Detector technology choice:
 - Best energy resolution
 - Lowest backgrounds
 - Most scalable

M. Agostini, et al., (2023) Rev. Mod. Phys. 95, 025002

Drawings: Laura Manenti 12

Where to search for $0\nu\beta\beta$

Current experiments Next generation (ton-scale) experiments Future generation experiments ?

Where to search for $0\nu\beta\beta$

** This plot is just one example of parameter space... It does not mean that is exactly where the Majorana neutrino is! **

Current running experiments

KamLAND-Zen

See I. Shimizu's talk

CUORE

See C. Bucci's talk

LEGEND-200

See L. Pertoldi's talk

Current (almost) running experiments

SNO+

NEXT-100

SUPERNEMO

SNO+

Isotope of ¹³⁰Te \rightarrow highest abundance, good

Poster 581:

The SNO+ Tellurium Deployment Programme

Thanks to J. Maneira, S.Biller and M.Chen for input

under commissioning

See J. Maneira's talk on Thursday for more details on SNO+ capabilities

SNO+

Isotope of ¹³⁰Te \rightarrow highest abundance, good •

Poster 581:

The SNO+ Tellurium Deployment Programme

Thanks to J. Maneira, S.Biller and M.Chen for input

O CDFT ♦QRPA-FFS **QRPA-JY** ■QRPA-Tu **♦QRPA-NC** XIBM2 **∆ISM-Tk** ▲ISM-INFN • GCM

Phase 3: 3%

under commissioning

See J. Maneira's talk on Thursday for more details on SNO+ capabilities

SuperNEMO (demonstrator)

Modular concept that builds on predecessor NEMO-3 located at LSM (France)

2034 Geiger cells with 712 optical modules 6.1kg ⁸²Se He, Ar, ethanol mix

- (Nearly) isotope-agnostic
- Full topological reconstruction and particle ID
- Unique 2vββ measurements:
 - nuclear effects
 - exotic decays & new physics
- Could probe 0vββ mechanism if discovered
- Proof of concept for future tracking detectors

SuperNEMO (demonstrator)

supernemo

collaboration

Install helium recycling system

Sensitive to $0\nu\beta\beta T_{1/2} > 4 \times 10^{24}$ years $\langle m_{\beta\beta} \rangle$ < 260-500 meV (in 2.5 years)

SuperNEMO's background model, and a new measurement of the γ background at LSM

Poster #451

More detail on SuperNEMO's capabilities and status

NEXT-100

High pressure xenon gas TPC with electroluminescence

- Gas → great energy resolution (sub-percent FWHM) JHEP 10 (2019) 230 \checkmark
- Kr calibration JINST 13 (2018) P10014 \checkmark
- Tracking plane \rightarrow topological signal/background separation *JHEP* 07 (2021) 146, *JHEP* 01 (2021) 189, *JHEP* 10 (2019) 052 \checkmark
- ✓ Background control → runs with depleted/enriched Xe JHEP 10 (2019) 51, Phys. Rev. C 105, 055501 (2022), JHEP 09 (2023) 190
 - Goal of NEXT-100 Scalability

NEXT-100 sensitivity: 4.1 x 10²⁵ yr JHEP 1605 (2015) 159

NEXT-White data -20 $2\nu\beta\beta$ candidate Background -40 candidate -30 -60-40(uu)) Y (mm) -80 -60-100-70 -120 -80 -100-60-120-80 -40-60-20-80 -40X (mm) X (mm)

All demonstrated by NEXT-White

Status of NEXT-100

- Detector fully built and under commissioning!
- First runs in Ar gas in May 2024
- Xenon runs to start shortly

Energy plane

Tracking plane

Vessel

Status of NEXT-100

- Detector fully built and under commissioning!
- First runs in Ar gas in May 2024
- Xenon runs to start shortly

Very recent detector response on alpha particles from ²²²Rn

Poster 362: Searching for the neutrinoless double beta decay with NEXT-100 by P.Novella

Coming soon: CDEX-300v

- Enr-Ge detectors test started in 2022 @ CJPL-I
- Test and operate LAr test facility in early 2024
- Hall C1 ready for experiment this June •
- Experimental setup in 2024
- First batch of Ge detector installation and test in 2024
- Expected 1.3×10²⁷ yr half-life sensitivity with 5 yr running

1725 m³ Liquid Nitrogen

LAr tube

Enriched Ge array

Thanks to Hao Ma for the slide!

Current generation sensitivity

Unless we are lucky, this generation may not get there...

Adapted from the Long Range Plan for Nuclear Physics 2023: arxiv:2304.03451

Next step: Conquer the Inverted Ordering

** This plot is just one example of parameter space... It does not mean that is exactly where the Majorana neutrino is! **

Conquering the inverted ordering

Currently proposed tonne-scale experiments: •

See C. Bucci's talk

NEXT-HD

- 5 tonnes of enriched LXe TPC (¹³⁶Xe)

nEXO

New readout technologies

	EXO-200:	nEXO:	Improvements:
Vessel and cryostat	Thin-walled commercial Cu w/HFE	Thin-walled electroformed Cu w/HFE	Lower background
High voltage	Max voltage: 25 kV (end-of-run)	<i>Operating</i> <i>voltage: 50 kV</i>	Full scale parts tested in LXe prior to installatio minimize risk
Cables	Cu clad polyimide (analog)	Cu clad polyimide (digital)	Same cable/feedthrough technology, R&D ider lower bkg substrate and demonstrated digital s transmission
e ⁻ lifetime	3-5 ms	5 ms (req.), 10 ms (goal)	Minimal plastics (no PTFE reflector), lower surf volume ratio, detailed materials screening prog
Charge collection	Crossed wires	Gridless modular tiles	R&D performed to demonstrate charge collect in LXe, detailed simulation developed
Light collection	APDs + PTFE reflector	SiPMs around TPC barrel	SiPMs avoid readout noise, R&D demonstrated from two vendors
Energy resolution	1.2%	1.2% (req.), 0.8% (goal)	Improved resolution due to SiPMs (negligible re in light channels)
Electronics	Conventional room temp.	In LXe ASIC-based design	Minimize readout noise for light and charge ch prototypes demonstrated in R&D and follow fr lineage
Background control	Measurement of all materials	Measurement of all materials	RBC program follows successful strategy demo EXO-200
Larger size	>2 atten. length at center	>7 atten. length at center	Exponential attenuation of external gammas an contained Comptons

nEXO sensitivity reaches 10²⁸ yr in 6.5 yr data taking

Thanks to G. Gratta for the slides!

NEXT-HD (and NEXT-BOLD)

- Module(s) of 1 tonne of ¹³⁶Xe building in NEXT technologies (NEXT-HD)
- Designed to accommodate future Ba tagging (NEXT-BOLD)

NEXT Collaboration, JHEP 164 (2021) 08

Letter of Intent to be submitted in 2025 to LSC

Poster 430: Optical Time Projection Chamber for the Realization of a Ton-Scale Neutrinoless Double Beta Decay Demonstratorby L. Rogers

Barium ion is only produced in a true $\beta\beta$ decay, not in any other radioactive event \rightarrow Identification of Ba ion with ~1% FWHM energy measurement would give a **background-free experiment**.

Very recent progress in Ba tagging

The NEXT approach uses single molecule fluorescence imaging (SMFI) to identify barium interacting the specially designed organic molecules. C1-Ba 2.E+5 LE long-live 5 1.E+5 Delay time afte 0.E+0 Ba²⁺ New background rejection modalities, e.g. phosphorescence/fluorescence separation Long wavelength IPG probes [6] Individual Ba²⁺ ions imaged in 10 bar of xenon gas 10 Bar Xenon, IPG 10 Bar Xenon, IPG+Ba **NEXT has built microscopy** systems capable of imaging individual barium ions in high pressure xenon gas environments.

- [1]. JINST 11 P12011 (2016)
- [2]. Phys. Rev. Lett. 120, 132504 (2018)
- [3]. Sci Rep 9: 15097 (2019)
- [4]. Nature 583, 48 (2020)

- [5]. ACS Sensors 6, 1, 192-20 (2021)
- [6]. 10.26434/chemrxiv-2023-wxpbh (2023)
- [7]. Publication in Preparation (2024)

New longer wavelength dyes enable higher quality single molecule imaging

Multidisciplinary effort with physicists, chemists, material scientists

Poster 377: BOLD: three strategies for detecting single Ba ions in NEXT using molecular indicators by P. Herrero Gomez

Poster 391: Advancements in Single Barium Ion Capture and Imaging for Barium Tagging Sensors in NEXT Neutrinoless Double Beta Decay Studies by K. Navarro

Conquering the inverted ordering

Next generation will *cover* the inverted ordering

Adapted from arxiv:2304.03451 (Whitepaper for the 2023 NSAC Long Range Plan)

Next next step: Attempt the Normal Ordering

** This plot is just one example of parameter space... It does not mean that is exactly where the Majorana neutrino is! **

Adapted from arxiv:2304.03451 (Whitepaper for the 2023 NSAC Long Range Plan)

Next next step: Attempt the Normal Ordering

And many more ideas

Experiment	Isotope	Mass	Technique	Present Statu
CANDLES-III [124]	48 Ca	305 kg	nat CaF ₂ scint. crystals	Operating
CDEX-1 [125]	⁷⁶ Ge	1 kg	enrGe semicond. det.	Prototype
CDEX-300 ν [125]	76 Ge	225 kg	e^{nr} Ge semicond. det.	Construction
LEGEND-200 [16]	$^{76}\mathrm{Ge}$	200 kg	enr Ge semicond. det.	Commissionin
LEGEND-1000 [16]	$^{76}\mathrm{Ge}$	1 ton	enrGe semicond. det.	Proposal
CUPID-0 [19]	82 Se	10 kg	$Zn^{enr}Se$ scint. bolometers	Prototype
SuperNEMO-Dem [126]	82 Se	7 kg	enr Se foils/tracking	Operation
SuperNEMO [126]	82 Se	100 kg	enrSe foils/tracking	Proposal
Selena [127]	82 Se		enr Se, CMOS	Developmen
IFC [128]	82 Se		ion drift SeF_6 TPC	Developmen
CUPID-Mo [17]	¹⁰⁰ Mo	4 kg	$Li^{enr}MoO_4$, scint. bolom.	Prototype
AMoRE-I [129]	100 Mo	6 kg	$^{40}\mathrm{Ca}^{100}\mathrm{MoO}_4$ bolometers	Operation
AMoRE-II [129]	100 Mo	200 kg	40 Ca 100 MoO ₄ bolometers	Construction
CROSS [130]	100 Mo	5 kg	$Li_2^{100}MoO_4$, surf. coat bolom.	Prototype
BINGO [131]	100 Mo	<u> </u>	$\mathrm{Li}^{enr}\mathrm{MoO}_4$	Developmen
CUPID [28]	100 Mo	450 kg	$Li^{enr}MoO_4$, scint. bolom.	Proposal
China-Europe [132]	$^{116}\mathrm{Cd}$		enrCdWO ₄ scint. crystals	Developmen
COBRA-XDEM 133	¹¹⁰ Cd	0.32 kg	^{nav} Cd CZT semicond. det.	Operation
Nano-Tracking 134	¹¹⁶ Cd		^{nat} CdTe. det.	Developmen
TIN.TIN [135]	124 Sn		Tin bolometers	Developmen
CUORE [10]	¹³⁰ Te	1 ton	TeO_2 bolometers	Operating
SNO+ [136]	¹³⁰ Te	3.9 t	$0.5\text{-}3\%$ $^{nat}\mathrm{Te}$ loaded liq. scint.	Commissionin
nEXO [29]	136 Xe	$5 \mathrm{t}$	Liq. enr Xe TPC/scint.	Proposal
NEXT-100 [137]	136 Xe	100 kg	gas TPC	Construction
NEXT-HD [137]	136 Xe	1 ton	gas TPC	Proposal
AXEL [138]	¹³⁶ Xe		gas TPC	Prototype
KamLAND-Zen-800 [13]	136 Xe	$745 \ \mathrm{kg}$	^{enr} Xe disolved in liq. scint.	Operating
KamLAND2-Zen [41]	136 Xe		^{enr} Xe disolved in liq. scint.	Developmen
LZ [139]	¹³⁶ Xe	600 kg	Dual phase Xe TPC, nat./enr. Xe	Operation
PandaX-4T [119]	¹³⁶ Xe	3.7 ton	Dual phase nat. Xe TPC	Operation
XENONnT [140]	136 Xe	5.9 ton	Dual phase Xe TPC	Operating
DARWIN [141]	136 Xe	50 ton	Dual phase Xe TPC	Proposal
R2D2 [142]	¹³⁶ Xe		Spherical Xe TPC	Developmen
LAr TPC [143]	¹³⁶ Xe	kton	Xe-doped LR TPC	Developmen
NuDot $[144]$	Various		Cherenkov and scint. in liq. scint.	Developmen
THEIA [145]	Xe or Te		Cherenkov and scint. in liq. scint.	Developmen
JUNO [146]	Xe or Te		Doped liq. scint.	Developmen
Slow-Fluor [147]	Xe or Te		Slow Fluor Scint.	Developmen

Very ambitious (technical) goals for the ton-scale experiments

Rev. Mod. Phys., Vol. 95, No. 2, April-June 2023

We need to continue our R&D efforts to develop mature technologies

- Very ambitious (technical) goals for the ton-scale experiments
- Radiopurity requirements are pushing the limits of radioassay capabilities

We can build a strong network of facilities

- Very ambitious (technical) goals for the ton-scale experiments
- Radiopurity requirements are pushing the limits of radioassay capabilities
- Working with industry is becoming more and more challenging (and expensive)

We can build a strong network of reliable companies

pngtree.com

- Very ambitious (technical) goals for the ton-scale experiments
- Radiopurity requirements are pushing the limits of radioassay capabilities
- Working with industry is becoming more and more challenging (and expensive) •
- Funding situations for fundamental research across the globe is much lower than our scientific ambitions

Let's avoid to duplicate efforts

- Very ambitious (technical) goals for the ton-scale experiments
- Radiopurity requirements are pushing the limits of radioassay capabilities
- Working with industry is becoming more and more challenging (and expensive)
- Funding situations for fundamental research across the globe is much lower than our scientific ambitions
- Community(ies) need to come together to be stronger, while pushing on new technology development

Pushing the instrumentation frontier together

Need for instrumentation development recognized worldwide •

Basic Research Needs for HEP Detector R&D (2019)

ECFA Detector R&D Roadmap (2021)

SNOWMASS Process (2021) → P5 Report (2023)

And more....

Pushing the instrumentation frontier together

- Need for instrumentation development recognized worldwide
- Creation of new Detector R&D Collaborations (2023) (approved by CERN council)
- Example: DRD2 Liquid Detectors

Charge Readout	Light Readout	Target Properties	Scaling-up Cha
Pixels & charge+light	Increased sensor quantum efficiency	Target properties and isotope loading of LS & WC	Radiopuri background m
Charge-to-light, electroluminescence & amplification	Higher efficiency WLS and collection		Detector and procurement/pr & purificat
lon detection	Improved sensors for LS & WC	Target properties and isotope loading of noble elements	Large-area re

Material pro

allenges	
ty & itigation	
l target roduction tion	
adouts	
perties	

Consider joining the DRD efforts! and the second second

Closing remarks

Understanding the nature of neutrinos is of the utmost importance

The next generation of experiments will *cover* the inverted neutrino mass ordering, but it will be technologically challenging

To reach the normal neutrino mass ordering, transformative technologies are needed

We need to continue to cast a wide net and explore different isotopes and technologies

Given the technological limitations, the community needs to work together to avoid duplication of scarce ressources

Closing remarks

