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CUORE @ LNGS

Cryogenic Underground Observatory for Rare Events

• Closely packed array of 988 TeO2 crystals (750 g each) working as cryogenic 

calorimeters


• Total mass of TeO2: 742 kg ( ~206 kg of 130Te )


• Operating temperature: ~10 mK


• Main goal: assess the Majorana nature of neutrinos by searching for 0νββ in 130Te

Rendering by Lightmap Creative s.r.l.
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Cryogenic calorimeters
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The absorbed energy is converted into a variation of the crystal temperature, measured by a thermistor
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• Ample choice of detector materials


‣ low heat capacity @  Twork


• excellent energy resolution (~0.3 % FWHM)


‣ huge number of energy carriers (phonons)


• equal detector response for different particles


‣ true calorimeters


• slow
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130Te 0νββ search
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Latest results on the 130Te 0νββ search 

• 28 datasets analyzed from May 2017 to April 2023


• Total analysed exposure: 2039.0 kg∙yr TeO2 (567.0 kg∙yr 130Te)

Efficiencies

• Total analysis efficiency 93.4 % 

‣ Reconstruction: 95.6 %  


‣ Anti-coincidence (M1): 99.8 % 


‣ PSD: 97.9 %


• Containment efficiency: 88.4 %

CUORE 
preliminary
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130Te 0νββ decay search

Bayesian and Frequentist Analysis 

• Unbinned fit in ROI: [2465, 2575] keV 


• Flat-background dataset-dependent 


• 0νββ posited peak


• time-dependent 60Co-sum peak


• Energy resolution channel and dataset dependent

Average background index:  count/ keV kg yr1.42(2) × 10−2

Half-life limit:  yr (90% C.I.)


Frequentist limit:  yr (90% C.L.)  

T0ν
1/2 > 3.8 × 1025

T0ν
1/2 > 3.7 × 1025
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130Te 0νββ decay search
Median exclusion sensitivity:  yr (90% C.I.)


‣ 67% probability to get a more stringent limit given the 
current sensitivity

4.4 × 1025

Limit on the effective Majorana mass 
(assuming light Majorana neutrino exchange)


 meVmββ < 70 − 240

ArXiv:2404.04453
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https://arxiv.org/abs/2404.04453
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Background Model

• Detailed geometry


• Simulation of ~80 different sources


• Takes advantage of the high granularity of the detector


• Bayesian simultaneous fit of M1 and M2 spectra with a linear combination 
of the background sources


• Priors given by radioassays and previous experiments

Accurate Geant4-based background model

ArXiv:2405.17937

CUORE 
preliminary

CUORE 
preliminary

https://arxiv.org/abs/2405.17937
https://arxiv.org/abs/2405.17937
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130Te 2νββ decay

• Subset of channels with lower background (innermost towers)


• Optimisation of fit energy range and binning


• SSD model assumed


• Improved accuracy respect to the previous result


• Systematics under finalisation (~ 1%)

Our background reconstruction allows for precise measurement of the 130Te 2νββ half-life

T2ν
1/2 = 9.323+0.052

−0.037 (stat.) × 1020 yr

CUORE 
preliminary
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Ettore Fiorini and CUORE
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• In about 30 years from the original paper of E. Fiorini and T. Niinikoski 
cryogenic detectors moved from a smart idea to a ton-scale project.

CUORE would not have been possible without the vision, 
determination, and enthusiasm of Ettore
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Challenge

• Cryogenics


‣ Mass cooled below 4K : ~ 15 tons


‣ Mass cooled below 50 mK : ~ 3 tons


‣ Lowest operating temperature: 7 mK


‣ Continuously operating at mK temperature: > 5 years


• Low-background


‣ Deep underground location


‣ Strict radio-purity controls on materials and assembly


‣ Passive shields outside and inside the cryostat 

Build a cryogenic system with an experimental volume of ~1 m3 in 
which to operate for several years a huge Low Temperature Detector 
array in a low-radioactivity and low-vibrations environment

Ancient roman lead
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Exposure
• Data taking started in Spring 2017


‣ In the first two years we learned how to operate the 
cryogenic system at its best and optimised the 
performances


‣ Datasets (~ 2 months long) interleaved by routine  
maintenances


• Continuous physics data taking at mK temperature 
since March 2019 


‣ Uptime > 90%


‣ Data taking rate ~ 50 kg∙yr/month
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Nature 604, 53-58 (2022)
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Noise reduction

Auxiliary devices:

• Microphones


• Accelerometers


• Seismometers


• Antennas

We developed noise decorrelation algorithms utilizing auxiliary devices to enhance the quality of 
CUORE data

• The total RMS noise of the CUORE detector is reduced by ~ 40%

Eur. Phys. J. C 84, 243 (2024)

CUORE 
preliminary
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https://doi.org/10.1140/epjc/s10052-024-12595-y
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Noise reduction
Quite unexpectedly we discovered that CUORE is sensitive to the faint microseismic activity 
induced by the sea waves

LNGS

• Strong correlation between storms and low frequency noise 
in CUORE


• Sea waves characteristic frequency: 0.2 - 0.3 Hz 


• Resonance frequency in the cryogenic apparatus

• Seasonal modulation of detectors 
energy resolution


• Solutions under study to improve 
cryostat seismic decoupling

ArXiv:2404.13602
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https://arxiv.org/abs/2404.13602
https://arxiv.org/abs/2404.13602
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Future plans

Upgrade of the cryogenic system in view of CUPID

• The CUORE cryogenic system is working spectacularly well


• It is capable of cooling detector payload (~1 ton) down to 7 mK


• The only needed upgrade regards the Pulse Tubes and their coupling to the cryostat  

‣ Substantial decrease of the vibrational induced noise on the detectors

• The effectiveness of the cryogenic upgrade will be tested with the CUORE detector


‣ 2nd CUORE run with improved vibrational noise ➡ lower threshold ➡ low energy studies


‣ Axions, WIMPs, etc.

We will continue collecting data until reaching 3 tonne∙yr of analysed TeO2 exposure (around 
end of 2025) after which we will proceed toward CUPID

CUORE data taking Cryogenic system upgrade CUORE low energy run CUPID installation

3 tonne ∙ yr

CUPID
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CUPID
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CUPID

• TeO2 → Li2MoO4: double readout for particle identification


‣ 1596 Li2MoO4 crystals arranged in 57 towers


‣ Each crystal has top and bottom Ge light detectors with 
Neganov-Luke amplification


• 130Te → 100Mo: higher Qββ for reduced ɣ/β backgrounds


‣ 95% enrichment in 100Mo


‣ 450 kg total mass: 240 kg of 100Mo


• Muon veto

CUPID (CUORE Upgrade with Particle IDentification) is conceived to overcome the CUORE limitations

Thanks to those characteristics CUPID aims at a background level of 10-4 count/keV kg yr


Improve sensitivity to mββ by factor of ~5 relative to CUORE

Li2MoO4 
crystal

Thermometers

Light detector

Light

Energy 
release
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CUPID
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CUPID

CUPID pros 
• Existing infrastructure

• Known background

• Cost effective project

• Scalable

Solid CUPID background estimates 
based on CUORE and R&Ds

CUPID has established a supply chain for producing all 
the Li2MoO4 crystals grown with ~95% enriched 100Mo 

• SICCAS (Shanghai, China) has the capability to produce the 
enriched Li2MoO4 crystals, procuring the isotope from a Chinese 
manufacturer. 


• SICCAS is the same company that produced all the CUORE TeO2 
crystals with radiopurity similar to CUPID requirements for Li2MoO4 


• Pre-production is on-going

100Mo 2νββ pile-up

Detector components

Li2MoO4 contaminants

Cryostat and shields

Muons and neutrons

Total

Background index [counts/keV kg yr]
10-6 10-5 10-4

Preliminary
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CUORE/CUPID Posters

CUORE K. Alfonso - CUORE analysis framework for 988 cryogenic calorimeters: 
Searching for 0𝜈𝛽𝛽 of 130Te


CUORE S. Ghislandi - Background decomposition of the CUORE experiment and 
measurement of the 2𝜈𝛽𝛽 half-life of 130Te


CUORE D. Mayer - Search for Fractionally-Charged Particles with CUORE


CUORE S. Pagan - Low Energy Analyses with CUORE and a Search for Solar 
Axions


CUORE S. Quitadamo - Exploring the impact of the Mediterranean Sea activity 
on the performance of CUORE mK-calorimetric experiment


CUORE J. Torres - Reconstruction of muon events with the CUORE experiment


CUORE K. J. Vetter - Enhancing CUORE Data Quality with Denoising Techniques


CUORE S. Wagaarachchi - 0𝜈𝛽𝛽 search using CUORE dual-Site events

CUPID A. Armatol - Development of NTL light detectors for the CUPID 0𝜈𝛽𝛽 
experiment


CUPID A. Armatol - Multiplexed TES Based Light Detectors using transition 
edge sensors for CUPID and beyond


CUPID V. Berest - The CUPID 0𝜈𝛽𝛽 experiment


CUPID M. Buchynska - The CROSS demonstrator: structure, performance and 
physics reach


CUPID D. Cintas Gonzales - Background simulations for CROSS experiment


CUPID S. Ghislandi, S. Quitadamo - Evaluation of the CUPID First Tower 
Prototype performance


CUPID P. Loaiza - Backgrounds of the CUPID experiment


CUPID P. Loaiza - Results from the CUPID-Mo Experiment


CUPID B. Schmidt - BINGO: Investigation of the Majorana nature of neutrinos at 
the few meV level of the neutrino mass scale


CUPID A. Zolotarova - TINY experiment: search for 0𝜈𝛽𝛽 decay with 96Zr and 
150Nd

Wide spectrum of physics results and developments
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