Results from KamLAND-Zen

Neutrino 2024

XXXI Conference on Neutrino Physics and Astrophysics June 18, 2024 Itaru Shimizu (Tohoku Univ.)

KamLAND-Zen Collaboration

~50 physicists work on this project

Collaboration meeting in September, 2023

KamLAND-Zen

Kamioka underground

KamLAND detector

Zero Neutrino Double Beta

Inner Balloon Production

nylon balloon was produced in class 1 clean room

Guide ring

12 strings

(Vectran)

KamLAND-Zen 800

Ovßß search : Feb. 5, 2019 – Jan. 12, 2024 with the complete KamLAND-Zen 800 data-set

Short-lived Spallation Products

Long-lived Spallation Products

xenon spallation products ~47% rejection efficiency

Event Selection

Fit to Energy Spectra for $0\nu\beta\beta$

0vββ candidate

(sensitive to $0v\beta\beta$ signal)

1131 days livetime R < 1.57 m

long-lived candidate

(Long-lived BG constraint)

111 days livetime

R < 1.57 m

0v $\beta\beta$ best-fit : **0 event** upper limit : **< 10.0 event** at 90% C.L. in R < 1.57 m

No positive signal, but we obtained a stringent upper limit

¹³⁶Xe $0\nu\beta\beta$ Decay Half-life

Upper Limits from Toy MC

distribution of $0\nu\beta\beta$ limits at 90% C.L. from Toy MC

Sensitivity is checked by MC assuming best-fit BG rate

Limits on Neutrino Mass

90% C.L.
$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu}(Q_{\beta\beta}, Z) |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

NME for ¹³⁶Xe : 1.11–4.77

NME calculations assuming $g_A \sim 1.27$

	Ref.	$M^{0\nu}$	$\langle m_{\beta\beta} \rangle \ (\mathrm{meV})$
Shell model	[1]	2.28, 2.45	59.4, 55.3
	[2]	1.63,1.76	$83.1,\ 77.0$
	[3, 4]	2.39	56.7
QRPA	[5]	1.55	87.4
	[6]	2.91	46.6
	[7]	2.71	50.0
	[8]	1.11, 1.18	122, 115
	[9]	3.38	40.1
EDF theory	[10]	4.20	32.3
	[11]	4.77	28.4
	[12]	4.24	32.0
IBM	[13]	3.25	41.7
	[14]	3.40	39.9

reached the IO horizontal band (< 50 meV) with half of the NMEs

Limits on Neutrino Mass

Most stringent tests of the neutrino mass in the IO region

Background Measures in Future

current status

Search sensitivity will be limited by the backgrounds from 2vββ and long-lived spallation

ROI event (2.35 < E < 2.70 MeV)

measures in future

→ energy resolution tail → light yield increase
detector upgrade plan : KamLAND2-Zen
RI decay in film → scintillation balloon
gamma or positron background
→ particle identification
spallation tagging with neutrons
→ new electronics

KamLAND2-Zen

Plan of Detector Upgrade

underground area

Summary

- Neutrinoless double-beta decays provide an important probe for physics beyond the Standard Model.
- Results with the complete KamLAND-Zen data-set KamLAND-Zen limits on 0vββ at 90% C.L.

KamLAND-Zen 400 $T^{0v}_{1/2} > 0.9 \times 10^{26} \text{ yr}$ KamLAND-Zen 800 $T^{0v}_{1/2} > 3.4 \times 10^{26} \text{ yr}$ Combined $T^{0v}_{1/2} > 3.8 \times 10^{26} \text{ yr}$ NME calculations assuming $g_A \sim 1.27$ $\langle m_{\beta\beta} \rangle < 28-122 \text{ meV}$

Most stringent tests of the neutrino mass in the IO region!

• We will start KamLAND2-Zen to achieve the search sensitivity covering the entire IO region.