Neutrinoless $\beta\beta$ decay searches: theory of nuclear matrix elements

Javier Menéndez

University of Barcelona Institute of Cosmos Sciences

XXXI International Conference on Neutrino Physics and Astrophysics (Neutrino 2024)

Milano, 18th June 2024

Creation of matter in nuclei: $0\nu\beta\beta$ decay

Lepton number conserved in all processes observed:

single β decay, $\beta\beta$ decay with ν emission... Neutral massive particles (Majorana ν 's) allow lepton number violation:

neutrinoless $\beta\beta$ decay creates two matter particles (electrons)

Agostini, Benato, Detwiler, JM, Vissani, Rev. Mod. Phys. 95, 025002 (2023)

$\beta\beta$ decay

Second order process in the weak interaction

Only observable in nuclei where (much faster) β -decay is forbidden energetically due to nuclear pairing interaction

$$BE(A) = -a_vA + a_sA^{2/3} + a_c\frac{Z(Z-1)}{A^{1/3}} + \frac{(A-2Z)^2}{A} + \begin{cases} -\delta_{\text{pairing}} & \text{N,Z even} \\ 0 & \text{A odd} \\ \delta_{\text{pairing}} & \text{N,Z odd} \end{cases}$$

or where β -decay is very suppressed by ΔJ angular momentum change

Scales in new-physics searches using nuclei

New physics scale: $\Lambda \gg 250 \text{ GeV}$

Electroweak scale: $v = \left(\sqrt{2}G_F\right)^{-1/2} \sim 250 \text{ GeV}$

QCD (hadron) scale: $m_N \sim \text{GeV}$

Nuclear scale: $k_F \sim m_\pi \sim 200 \text{ MeV}$

Nuclear matrix elements for new-physics searches

Neutrinos, dark matter studied in experiments using nuclei

Nuclear structure physics encoded in nuclear matrix elements key to plan, fully exploit experiments

$$\begin{split} &0\nu\beta\beta: \left(T_{1/2}^{0\nu\beta\beta}\right)^{-1} \propto g_A^4 \left| M^{0\nu\beta\beta} \right|^2 m_{\beta\beta}^2 \\ &\text{Dark matter: } \frac{\mathrm{d}\sigma_{\chi\mathcal{N}}}{\mathrm{d}\boldsymbol{q}^2} \propto \left| \sum_i c_i \zeta_i \mathcal{F}_i \right|^2 \\ &\text{CE}\nu\mathrm{NS: } \frac{\mathrm{d}\sigma_{\nu\mathcal{N}}}{\mathrm{d}\boldsymbol{q}^2} \propto \left| \sum_i c_i \zeta_i \mathcal{F}_i \right|^2 \end{split}$$

 $M^{0\nu\beta\beta}$: Nuclear matrix element $\mathcal{F}_{i}_{5/23}$: Nuclear structure factor

$0\nu\beta\beta$ decay half-life

Half-life of $0\nu\beta\beta$ decay sensitive to $m_{\beta\beta} \sim 1/\Lambda$ (dim-5 operator), new-physics scales $\widetilde{\Lambda}$ (dim-7) or $\widetilde{\Lambda}'$ (dim-9)

$$\mathcal{T}_{1/2}^{-1} = G_{01} g_A^4 \left(M_{\text{light}}^{0\nu} \right)^2 m_{\beta\beta}^2 + m_N^2 \tilde{G} \, \tilde{g}^4 \, \tilde{M}^2 \left(\frac{v}{\tilde{\lambda}} \right)^6 + \frac{m_N^4}{v^2} \tilde{G}' \, \tilde{g}'^4 \, \tilde{M}'^2 \left(\frac{v}{\tilde{\lambda}'} \right)^{10}$$

 $G_{01}, \widetilde{G}, \widetilde{G}'$: phase-space factors (electrons), very well known $g_A, g_{\nu}^{NN}, \widetilde{g}, \widetilde{g}'$: coupling to hadron(s), experiment or calculate with QCD $M_{long}^{0\nu}, M_{short}^{0\nu}, \widetilde{M}, \widetilde{M}'$: nuclear matrix elements, many-body challenge

Next generation experiments: inverted hierarchy

Decay rate sensitive to neutrino masses, hierarchy $m_{\beta\beta} = |\sum U_{ek}^2 m_k|$

Matrix elements assess if next-generation experiments fully cover "inverted hierarchy" 7/23

KamLAND-Zen, PRL130 051801(2023)

Uncertainty in physics reach of $0\nu\beta\beta$ experiments

Agostini, Benato, Detwiler, JM, Vissani Phys. Rev. C 104 L042501 (2021) 8/23 Nuclear matrix element theoretical uncertainty critical to anticipate $m_{\beta\beta}$ sensitivity of future experiments

Current uncertainty in $m_{\beta\beta}$ prevents to foresee if next-generation experiments will fully cover parameter space of "inverted" neutrino mass hierarchy

Uncertainty needs to be reduced!

Nuclear matrix elements

Nuclear matrix elements needed in low-energy new-physics searches

$$raket$$
 Final $|\mathcal{L}_{ ext{leptons-nucleons}}|$ Initial $angle=raket$ Final $|\int dx\, j^\mu(x) J_\mu(x)|$ Initial $angle$

- Nuclear structure calculation of the initial and final states: Shell model, QRPA, IBM, Energy-density functional Ab initio many-body theory QMC, Coupled-cluster, IMSRG...
- Lepton-nucleus interaction: Hadronic current in nucleus: phenomenological, effective theory of QCD

$0\nu\beta\beta$ decay nuclear matrix elements

Large difference in nuclear matrix element calculations

Agostini, Benato, Detwiler, JM, Vissani, Rev. Mod. Phys. 95, 025002 (2023)

10 / 23

"Quenching": missing physics in the calculations

 β decays (e⁻ capture): nuclear shell model vs ab initio

Martinez-Pinedo et al. PRC53 2602(1996)

 $\langle F| \sum_{i} [g_A \sigma_i \tau_i^-]^{\text{eff}} |I\rangle, \ [\sigma_i \tau]^{\text{eff}} \approx 0.7 \sigma_i \tau$ Shell model: $\sigma_i \tau$ "quenching" quenching: effects not in model

Gysbers et al. Nature Phys. 15 428 (2019)

Ab initio calculations including meson-exchange currents and additional nuclear correlations do not need "quenching"

Origin of β decay "quenching"

Which are main effects missing in conventional β -decay calculations? Test case: GT decay of ¹⁰⁰Sn

Relatively similar and complementary impact of

- nuclear correlations
- meson-exchange currents

Gysbers et al. Nature Phys. 15 428 (2019)

12 / 23

2b currents in $0\nu\beta\beta$ decay

In $0\nu\beta\beta$ decay, two weak currents lead to four-body operator when including the product of two 2b currents: computational challenge

Approximate 2b current as effective 1b current normal ordering with respect to a Fermi gas JM, Gazit, Schwenk, PRL107 062501(2011)

Normal-odering approximation works remarkably well for β decay (q = 0) Gysbers et al. Nature Phys. 15 428 (2019)

Correlations in $0\nu\beta\beta$ decay

Compare $\beta\beta$ transition densities: shell model vs quantum Monte Carlo agree at long distances, shell model misses short-range correlations

$$4\pi r^2 \rho_{GT}(r) = \langle \Psi_f | \sum_{a < b} \delta(r - r_{ab}) \sigma_{ab} \, \tau_a^+ \tau_b^+ | \Psi_i \rangle \qquad M_{GT}^{0\nu} = \int_0^\infty dr \, C_{GT}^{0\nu}$$

Generalized contact formalism Weiss et al. PRC106 065501 (2022) Separation of scales: wf, transition density factorize for nearby nucleons

Ab initio calculations of ⁷⁶Ge

Two different ab initio methods calculate $0\nu\beta\beta$ decay of ⁷⁶Ge: IM-GCM and VS-IMSRG

IM-GCM better describes spectroscopic properties of ⁷⁶Ge, ⁷⁶Se

VS-IMSRG less computationally expensive, better suited to study heavier nuclei

The two ab initio $0\nu\beta\beta$ NMEs disagree by $\sim 30\%$

Belley et al. PRL132 182502 (2024)

Light-neutrino exchange: contact operator

Short-range operator contributes to light-neutrino exchange for RG invariance of two-nucleon decay amplitude: high-energy ν 's

 $T_{1/2}^{-1} = G_{01} \, g_A^4 \left(M_{\text{long}}^{0
u} + \, M_{\text{short}}^{0
u}
ight)^2 \, m_{etaeta}^2, \quad ext{ Cirigliano et al. PRL120 202001(2018)}$

$$\begin{split} M_{\text{short}}^{0\nu} &\equiv \frac{1.2A^{1/3}\,\text{fm}}{g_A^2}\,\langle 0_f^+ |\sum_{n,m} \tau_m^- \tau_n^- \,\mathbf{1} \big[\frac{2}{\pi}\int j_0(qr)\,2g_\nu^{\text{NN}}\,g(p/\Lambda)\,p^2dp\big] |0_i^+\rangle,\\ M_{\text{GT}}^{0\nu} &\simeq \frac{1.2A^{1/3}\,\text{fm}}{g_A^2}\,\langle 0_f^+ |\sum_{n,m} \tau_m^- \tau_n^-\,\sigma_1\cdot\sigma_2\,\big[\frac{2}{\pi}\int j_0(qr)\,\frac{1}{p^2}\,g_A^2\,f^2(p/\Lambda_A)\,p^2dp\big] |0_i^+\rangle \end{split}$$

Unknown value (and sign) of the hadronic coupling g_{ν}^{NN} !

1

Lattice QCD calculations can obtain value of g_{ν}^{NN} Davoudi, Kadam, Phys. Rev. Lett. 126, 152003 (2021), PRD105 094502('22) match $nn \rightarrow pp + ee$ amplitude calculated with dispersion QCD methods Cirigliano et al. PRL126 172002 (2021), JHEP 05 289 (2021) charge-independence breaking of nuclear Hamiltonians Cirigliano et al. PRC100, 055504 (2019) $_{16/23}$

Long and short-range NME in heavy nuclei

Relatively stable contribution of new term M_S/M_L :

20%-50% impact of short-range NME in shell model 30%-70% impact of short-range NME in QRPA

consistent with 43% effect in IM-GCM for ⁴⁸Ca using calculated $nn \rightarrow pp + ee$ decay Wirth et al. PRL127 242502 (2021)

Jokiniemi, Soriano, JM, Phys. Lett. B 823 136720 (2021)

Uncertainty dominated by coupling $g_{
u}^{
m NN}$

Ab initio predictions for nuclear neutron radius

Remarkable progress ab initio calculations of (relatively uncorrelated) heavy nuclei, ²⁰⁸Pb

Determine ²⁰⁸Pb neutron skin using Bayesian approach sampling of 10⁹ (parameters of) nuclear Hamiltonians

Hu, Jiang, Miyagi et al. Nature Phys. 18 1196 (2022)

$0\nu\beta\beta$ NMEs: theoretical uncertainty

Ab initio VS-IMSRG $0\nu\beta\beta$ of ⁷⁶Ge provide first robust calculation of NME with theoretical uncertainties

Sampling over > 8000 (parameters) of non-implausible nuclear Hamiltonians

Hamiltonians weighted by ${}^{1}S_{0}$ phase shift at 50 MeV found to be correlated with $0\nu\beta\beta$ NMEs

Correlation of $0\nu\beta\beta$ decay and $2\nu\beta\beta$ decay

Good correlation between 2ν and 0ν modes of $\beta\beta$ decay in nuclear shell model (systematic calculations of different nuclei) and QRPA calculations (decays of $\beta\beta$ emitters with different g_{pp} values)

Similar but not common correlation, depends on mass for shell model $0\nu\beta\beta - 2\nu\beta\beta$ correlation also observed in ⁴⁸Ca, ¹³⁶Xe Horoi et al. PRC106 054302 (2022), PRC107 045501 (2023)

$0\nu\beta\beta$ NMEs from $2\nu\beta\beta - 0\nu\beta\beta$ correlation

NMEs consistent with previous nuclear shell model, QRPA results

Theoretical uncertainty involves systematic calculations covering dozens of nuclei and interactions error of each calculation (eg quenching) and experimental $2\nu\beta\beta$ error

Previous theoretical uncertainty mostly ignored: collection of calculations

$0\nu\beta\beta$ decay total (long- and short-range) NMEs

Not-so-large difference in nuclear matrix element calculations!

Gómez-Cadenas, Martín-Albo, JM, Mezzeto, Monrabal, Sorel, Riv. Nuovo Cim. 46, 619 (2023)

Summary

Calculations of $0\nu\beta\beta$ NMEs challenge nuclear many-body methods, searches demand reliable NMEs

Ab initio results suggest reduced NMEs due to nuclear correlations key to understand β decay "quenching"

Enhancement by short-range NME: should be included in all NMEs used to extract experimental $m_{\beta\beta}$ sensitivities

Theoretical NME uncertainties by sampling nuclear Hamiltonians or exploiting $0\nu\beta\beta - 2\nu\beta\beta$ correlation

Outlook: 2b currents, key in β decays soon included fully in $0\nu\beta\beta$ calculations!

