

XXXI International Conference on Neutrino Physics and Astrophysics June 16-22, 2024 Milan, Italy

Open problems in HE neutrino astrophysics A particle physicist point-of-view Neutrino 24, Milano

ALMA MATER STUDIORUM Università di Bologna Maurizio Spurio, <u>maurizio.spurio@unibo.it</u> Università di Bologna and INFN

M. Spurio: Open problems in HE v's - Neutrino 24

Energy density of the extragalactic radiation

Energy density of the extragalactic radiation

Adapted from M. Taiuti

Palladino+, Universe 2020, 6,30

The Neutrino Cosmic-Ray Connection

ectrons

protons, nuclei

Hadro-nuclear mechanism:

$$p + p \rightarrow \begin{cases} \pi^0 \rightarrow \gamma + \gamma \\ \pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_e + \overline{\nu}_\mu + \nu_\mu \\ \pi^- \rightarrow \mu^- + \overline{\nu}_\mu \rightarrow e^- + \overline{\nu}_e + \nu_\mu + \overline{\nu}_\mu \end{cases}$$

Photo-hadronic mechanism:

$$\gamma + p \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0} \rightarrow p + \gamma + \gamma \\ n + \pi^{+} \rightarrow n + \mu^{+} + \nu_{\mu} \rightarrow n + e^{+} + \nu_{e} + \overline{\nu}_{\mu} + \nu_{\mu} \\ \downarrow n \rightarrow p + e^{-} + \overline{\nu}_{e} \end{cases}$$

• The **leading pion** carries (on average) 1/5 of the proton E_{K} .

 The 4 light (anti)leptons in π[±] decay carries ¼ of its energy:

neutrinos

photons

- The pion carries 1/5 of the proton E_{κ} .
- The same relation among E_{ν} , E_{γ} , and E_P energies holds

Extra-galactic sources

protons, nucle

II) If γ -rays escape the source, at $E_{\gamma} \gtrsim 1$ TeV are strongly attenuated by $\gamma\gamma$ interaction with the CMB and the Extragalactic Background Light (EBL).

M. Spurio: Open problems in HE v's - Neutrino 24

photons

The Neutrino Cosmic-Ray Connection

I) Sources may not be γ-ray transparent.
 In photo-hadronic collisions, the dense target of is also a target for γγ
 interaction and subsequent cascading

CMB, EBL

The neutrino telescope world map 202*

The neutrino telescope world map 202*

Background of atmospheric μ and ν

Background of atmospheric μ and ν

Background of atmospheric μ and ν

M. Spuno: Open problems in HE v's - Neutrino 24

The IceCube discovery of cosmic neutrinos

lceCube arXiv:2403.02516v3

IceCube High Energy Starting Events

68% CL contours

- Mostly cascades with poor angular resolution (>10°)
- Selection criteria favor events from Southern sky
- Excess of events (>60 TeV) w.r.t. atmospheric background.

-1)

3.0

Upward throughgoing tracks

- Upgoing tracks by v_{μ} interactions, 9.5 y of data \rightarrow Northern sky
- Relatively poor (good) energy (direction) estimate
- Excess (E>100 TeV) over the expected distribution for background events using an unfolding method

Cascades: $v_e v_{\tau}$ CC+NC interactions

- Showers produced by ν_{e} and ν_{τ} interactions, 6.0 y of data
- Relatively poor (good) direction (energy) estimate
- Energy range from 16 TeV to 2.6 PeV, all-sky
- Boosted Decision Tree based rejection of muons

Enhanced Starting Track Events (ESTES) III IceCube: arXiv:2402.18026

- Selection of starting tracks (v_{μ} CC) based on a BDT,.
- Energy range from 3 to 500 TeV
- SPL slightly different from North and South sky

Baikal-GVD cascades

- Selection of cascades, events from all sky
- To remove the background of atmospheric muons, upgoing events selected (mostly South sky)
- Excess w.r.t. atmospheric v's > 15 TeV

Diffuse flux: no a Single Power Law

IceCube: PoS(ICRC23)1064
 IceCube: arXiv:2402.18026

- No clear agreement with SPL from different samples, in particular below few tens of TeV.
- This could be attributed to:
 - different energy range of samples
 - the different flavor in the samples;
 - (most) of Galactic Plane in South Sky.
- A segmented fit of the IceCube data (tracks+ cascades) seems represent data better: spectral features visible (between 20-30 TeV)

Diffuse flux: no a Single Power Law

IceCube: PoS(ICRC23)1064
 IceCube: arXiv:2402.18026

- No clear agreement with SPL from different samples, in particular below few tens of TeV.
- This could be attributed to:
 - different energy range of samples
 - the different flavor in the samples;
 - (most) of **Galactic Plane** in South Sky.
- A segmented fit of the IceCube data (tracks+ cascades) seems represent data better: spectral features visible (between 20-30 TeV)
- The starting tracks sample (new) agrees with segmented fit above the 30 TeV feature
- ANTARES data also are more compatible with some change of slope at 20-30 TeV. See:
 ANTARES Poster L. Fusco (paper in preparation)

Point Sources: catalog of TeV γ-rays

Today: 336 objets

94 Galactic (<15 kpc)

Out of the Galactic Plane: AGN

- 8 AGN with 0.5<z<1
- 18 AGN with 0.2<z<0.5
- 28 AGN with 0.1<z<0.2
- 23 AGN with 0.001<z<0.1
- 7 GRBs (transient)
- Blazars are powerful AGN with relativistic jets directed at the Earth.
- Not all blazars are γ-ray sources, but they constitute the dominant population
- **Seyfert** are visible galaxies with active nuclei (unusually bright core regions).

Point Sources: catalog of neutrinos

Today: 2 objets

ν_{μ} from the blazar TXS 0506+056 (I)

Sept. 22, 2017:

A neutrino in coincidence with a blazar flare

2014-2015: A (orphan) neutrino flare found from the same object in historical data

- An electromagnetic follow-up campaign followed the IC ν_{μ} event (angular resolution < 1°)
- FERMI-LAT and MAGIC observations indicate that this event correlate with the blazar (BL Lac object or FSRQ?) TXS 0506+056 at redshift z=0.3365
- After the coincident event, a v-flare but without associated γ -rays found in **archival IceCube data**.
- A further analysis of archival IceCube data revealed a precedent v burst with excess of **(13±5)** events.
- No significant EM flaring activity during the v burst
- Two potential v flares of very different nature
- Not simple theoretical interpretation

IceCube 2π sr sky survey

NGC-1068

- Neutrino candidates vs.
 (angular distance)² from source.
- **79±22** events in excess

- **110 selected sources**. Found 3 sources with $> 3\sigma$ pre-trial.
- Use of up-going muon tracks
- The astrophysical origin of the v excess deduced mainly from directional clustering, not from their high energies
 - NGC 1068 (M77), close AGN (**10 Mpc**), not TeV γ-rays
 - <u>TXS 0506+056</u>, z=0.336 (**1.8 Gpc**), γ-rays from 80 to 400 GeV
 - <u>PKS 1424+240</u>, z=?

Results of neutrino sky map

- **NGC 1068:** neutrino energies in a range not well measured with the diffuse flux.
- Best-fit spectral index of $\gamma = 3.2\pm0.2$, softer than the diffuse flux
- TXS 0506+056 is >100 times farther away than the near NGC 1068: there are at least <u>two</u> <u>populations of neutrino sources</u> that differ in luminosity by orders of magnitude.
- The TXS 0506+056 time-integrated emission in 10 y has pre-trial of 3.5 σ (i.e. n_s=5).
- The *Science 2018* result provided evidence for transient emission with n_s = **13±5** in 6 months.

Spectral Energy Distribution of IC diffuse flux and of NGC and TXS sources.

cm

[TeV]

 $E_{\nu}^{2}\phi_{\nu+\bar{\nu}}$

Results of neutrino sky map

- **NGC 1068:** neutrino energies in a range not well measured with the diffuse flux.
- Best-fit spectral index of $\gamma = 3.2\pm0.2$, softer than the diffuse flux
- TXS 0506+056 is >100 times farther away than the near NGC 1068: there are at least <u>two</u> <u>populations of neutrino sources</u> that differ in luminosity by orders of magnitude.
- The TXS 0506+056 time-integrated emission in 10 y has pre-trial of 3.5 σ (i.e. n_s=5).
- The Science 2018 result provided evidence for transient emission with n_s = 13±5 in 6 months.
- If the TXS 0506+056 findings are both corrects, the population of HE (100 TeV range) v's could be significantly influenced by transients

Spectral Energy Distribution of IC diffuse flux and of NGC and TXS sources.

Origin of the (diffuse) extragalactic ν 's For a recent review: see the 377 refs in Fiorillo, Universe 2024, 10, 149

To identify v sources, different strategies are adopted in IceCube, ANTARES, Baikal-GVD and KM3NeT:

- searches for multiplets of events from close directions in the sky
- searches for temporal and spatial correlations with transients
- cross-correlation of v angular distribution with catalogs
- the analysis of the neutrino angular power spectrum

Sources candidates

- AGNs jets: about 1-10% of the AGNs. Blazars=jets towards the Earth. **TXS 0506+056**
- AGNs cores (Seyfert,...): v produced in an optically thick region that absorbs γ–rays. NGC 1068
- GRBs (or choked/low-luminosity GRBs)
- Starburst galaxies
- Tidal Disruption Events (TDEs)
- Clusters of galaxies

...

- Galaxy & Galaxy Cluster mergers
- Beyond the Standard Model (BSM)

M. Spurio: Open problems in HE v's - Neutrino 24

Open problems with the identification of sources

- Public catalogues have also been used by many authors in >>377 refs
- Positive correlations (also >3σ) between v and selected catalogues have disappeared or significantly reduced after a new release of v candidates appears.
- The ν catalogs released by Collaborations are "work in progress" as they can be improved in the future
- The accuracy of reconstruction of the v properties is limited by systematics: new refined statistical analysis, improved reconstruction/ calibration can lead to a significant improvements in v direction/energy.
- The reduction of "> 3σ " is true also for the TXS 0506+056 burst (arXiv:2307.14559)
- Analysis of data of independent experiments, with uncorrelated systematic errors, could be recommended to reduce incorrect associations
- Warning for young researchers: the machine learning involves a training dataset with characteristics based on MC simulations can be affected by the medium properties (water is more homogeneous that ice, but it needs calibrations)

pγ→π⁺n

 γ_{synchi}

 $\pi^0 p$

-20

Synchrotron Radiation

The Galaxy is not a neutrino desert

- IceCube compared three diffuse emission models (based on v production associated with CRs and γ-rays) from the Galactic plane to a background-only hypothesis
- Cascades with poor angular precision

- Model-dependent result, due to the impossibility to evaluate the background using data.
- Three *results* produced on the **flux integrated over the whole sky**: a factor of x 4-6 difference @1 TeV.

The Galactic ridge

- Most of the signal from the Galactic Ridge $|b| < 2^{\circ}$ and $|| < 30^{\circ} = \frac{1}{172} \times 4\pi$ sr
- Each model yields a different signal contribution in this region
 - 12% of the total signal by π^0 model
 - 30%-40% in the KRA γ .

ANTARES as a «telescope»

ANTARES: PLB841 (2023) 137951 ANTARES PoS(ICRC2023)1084/1103

- Robust and model-independent measurement (**On-Off method**) possible due to the Earth rotation
- Use upgoing track-like events (better direction)
- Observed a 2.2σ excess from signal region

ANTARES as a «telescope»

ANTARES: PLB841 (2023) 137951 ANTARES PoS(ICRC2023)1084/1103

- Robust and model-independent measurement (**On-Off method**) possible due to the Earth rotation
- Use upgoing track-like events (better direction)
- Observed a 2.2σ excess from signal region
- IceCube signal from the Ridge (*\epsilon_ridge* modeldependent)

Galactic and extragalactic neutrinos (I) In IceCube: PoS(ICRC2023)017

Galactic and extragalactic neutrinos (II) CeCube: PoS(ICRC2023)017

Galactic and extragalactic neutrinos (III) Galactic PoS(ICRC2023)017

Galactic and extragalactic neutrinos (IV)

- A diffuse flux of cosmic v's firmly established by IceCube. A simple power law seems not represent all data samples. Good news, i.e.: statistics increases
- Below few tens of TeV, small tension in the data. Still insufficient precision/sensitivity

- A **diffuse flux of cosmic** v's firmly established by IceCube. A simple power law seems not represent all data samples. Good news, i.e.: statistics increases
- Below few tens of TeV, small tension in the data. Still insufficient precision/sensitivity
- Two sources significantly detected, but **extragalactic sources**/class of sources still **not identified**.
- Caveat: the sources of >100 TeV v's could be dominated by transients, if TXS orphan flare correct

- A **diffuse flux of cosmic** v's firmly established by IceCube. A simple power law seems not represent all data samples. Good news, i.e.: statistics increases
- Below few tens of TeV, small tension in the data. Still insufficient precision/sensitivity
- Two sources significantly detected, but **extragalactic sources**/class of sources still **not identified**.
- Caveat: the sources of >100 TeV v's could be dominated by transients, if TXS orphan flare correct
- Existence of galactic neutrinos with 1<E<100 TeV established.
- Impossible to disentangle the contribution of CR diffusion from that of sources. More precise results from Northern telescopes using upgoing v_{μ} tracks.

- A **diffuse flux of cosmic** v's firmly established by IceCube. A simple power law seems not represent all data samples. Good news, i.e.: statistics increases
- Below few tens of TeV, small tension in the data. Still insufficient precision/sensitivity
- Two sources significantly detected, but **extragalactic sources**/class of sources still **not identified**.
- Caveat: the sources of >100 TeV v's could be dominated by transients, if TXS orphan flare correct
- Existence of galactic neutrinos with 1<E<100 TeV established.
- Impossible to disentangle the contribution of CR diffusion from that of sources. More precise results from Northern telescopes using upgoing v_{μ} tracks.

• The ongoing activities (IceCube, KM3NeT, Baikal-GVD) and in the future IceCube Gen2 and (may be) other telescopes in the North will contribute to clarify these fundamental aspects for HE astrophysics

Spares

Neutrino event topologies

Tracks $(\nu_{\mu} + N \rightarrow \mu + X)$

- Good angular resolution 0.1°-1°
- Vertex can be outside the detector
 - Muon range in water/ice >5 km @ E_{μ} >1 TeV
- Challenging energy estimation
- Vertex inside the detector (starting tracks)
 - Use of self-veto

Cascades or Showers ($\nu_e + N \rightarrow e + X + N.C.$)

- Vertex inside the detector
 - EM cascade develops in 10 m in water
- Fully active calorimeter
 - better E determination
- Limited angular resolution (few to 15°)
- All flavors for NC

Warning: some event properties (energy, direction,...) depends on medium (sea or lake water, ice)

ANTARES tracks+cascades

- Upward-going tracks and showers (mostly from the South sky) collected over 4541 days
- Analysis mostly sensible in the 1-30 TeV visible energy. Small sensitivity above 100 TeV
- The SPL extension of the HESE below 10 TeV excluded with a 99.7% probability. Soft-spectra solutions
 become admissible (within the 95% posterior probability) only if a hard cut-off in the 10–20 TeV region.

The Galaxy is not a neutrino desert

- The model predictions depend on:
- distribution and emission spectrum of cosmic-ray (CR) sources in the Galaxy,
- the properties of CR diffusion in the interstellar medium,
- the spatial distribution of target gas.

• Each neutrino emission model converted to a spatial template and convolved with the detector acceptance and the angular uncertainty, to produce a specific spatial PDF