Hyper-Kamiokande

Shigetaka MORIYAMA, on behalf of the Hyper-Kamiokande collaboration

Kamioka Observatory, Institute for Cosmic Ray Research, Next-generation Neutrino Science and Multi-messenger Astronomy Organization, and Kavli Institute for the Physics and Mathematics of the Universe (WPI), U of Tokyo

XXXI International Conference on Neutrino Physics and Astrophysics June 16-22, 2024 Milan, Italy

International Hyper-K collaboration and a new UTokyo building at Kamioka

NUMBER OF COLLABORATORS

2015 2016 2017 2018 2019 2020 2021 2022 2023 Hyper-K meeting @Kamioka Oct. 2023 22 countries, 104 institutes, 583 members as of April 1, 2024 Still linearly increasing

J-PARC off-axis $v_{\mu} \& \overline{v_{\mu}}$ beam (~0.6 GeV, ~295 km)

HK 10 yr, 2.7x10²² POT 1:3 v:v, 1-ring e-like + 0 decay e, > 1000 events each

Atmospheric 3-flavor v beam (0.1-10³ GeV, 10-13,000 km)

• The wide range of E (0.1~10³ GeV) and L (10 km - 13,000 km -) provide an excellent opportunity to study various properties of v.

- Study of the earth matter effect to determine neutrino mass ordering <u>~80 events/day</u>
- Unique tests of exotic properties

Oscillation studies with wide range of E and L. The matter effect solves MO.

In case of $\cos\Theta_{\rm v}$ =-0.8, the effect of MO can be observed.

	$\sin^2 heta_{23}$	Atmospheric neutrino	Atm + Beam
Mass	0.40	2.2 σ -	→ 3.8 σ
ordering	0.60	4.9 σ —	→ 6.2 σ
θ_{23}	0.45	2.2 σ -	→ 6.2 σ
octant	0.55	1.6 σ -	→ 3.6 σ

Atmospheric neutrino:

sensitive to mass ordering by the earth matter effects → Constraints on mass ordering enhance sensitivity to CP violation by long-baseline

10 years with 1.3MW, normal mass ordering is assumed

Proton decay searches (note: FV ~8 x Super-K)

Solar ν spectrum & possible differences in $\nu_e/\overline{\nu_e}$ oscillation

Confirm MSW effect by observing spectrum distortion "up-turn" Compare v_e , $\overline{v_e}$ oscillation (currently ~1.5 σ tension in solar/reactor v)

~130 events/day

- > 3σ sensitivity for the spectrum up-turn in 10 yrs (E_{th}=4.5 MeV).
- ~2 σ day/night sensitivity expected for the difference in v_e/\bar{v}_e osc. in 20 yrs.

Diffuse Supernova Neutrino Background (DSNB)

integrated flux ~10 cm⁻²sec⁻¹

11

Detector Location and J-PARC $\boldsymbol{\nu}$ beam

- 8 km south of Super-K
- 295 km from J-PARC and 2.5 deg. off-axis beam (same as Super-K)
- 600 m rock overburden

Photo-detection system

• Detailed design of the tank lining and photosensor support structure completed.

- New features of 50 cm PMT (B&L-dynode) include
 - High QE, T resolution, pressure tolerance (x2 better than Super-K)
 - dark rate reduction, low radioactivity, cover development
 - long-term performance evaluation already in Super-K
 - ➔ 20 000 of 50 cm PMTs from Japan

PMT production ongoing, >10,000 delivered. Screening both at Hamamatsu and Kamioka

Photosensors and underwater electronics

Outer detector: PMT+WLS plate

Photosensors/elec. mockup

Underwater Case design and electronics: feedthrough

Multi-PMT module:

PMT cover

Attachement Base

• Further beam intensity increase will be done by $1.36 \rightarrow 1.16$ sec cycle

Near Detectors: ND280 and IWCD

- CPV: difference in $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$
- Statistical uncertainty of $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$
 - ~5% for 3 years, ~3% in 10 years
- T2K-ND280 demonstrated that systematics on fluxes and cross-sections can be controlled to ~3-4%
- Further improvements are expected in HK thanks to the combination of ND280 Upgrade and IWCD

2.5 deg. off-axis

Number of single ring e-like events in 10 years ($\nu: \bar{\nu} = 1:3, \delta_{CP} = -90^{\circ}$)

	total	$ u_{\mu} ightarrow u_{e}$	$\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}$	Beam v_e , $\bar{v_e}$	NC	Other BG	
Neutrino Mode (0+1 decay e)	2785.33	81%	< 1%	12%	6%	< 1%	
Anti Neutrino Mode (0 decay e)	1542.72	15%	51%	24%	10%	< 1%	
			_				

Wrong sign component: 15% → Will be measured by magnetized detector ND280

Successful upgrade for T2K: large acceptance and short track by hadrons to reduce systematic errors. \rightarrow Super-FGD, High-angle TPC Full operation started in the current T2K run!

cf. recent progress: T2K talk by C. Giganti

Beam v_e , \bar{v}_e & NC background: ~30% \rightarrow Will be measured by IWCD, at 2.5 degree OAA

$$\frac{\sigma(\nu_e)/\sigma(\nu_{\mu})}{\sigma(\overline{\nu}_e)/\sigma(\overline{\nu}_{\mu})}$$
 xsec ratio \rightarrow Will be measured
by IWCD off-axis angle (OAA) span (next page)

Intermediate Water Cherenkov Detector (IWCD)

Veutrino Flux

Measurements at IWCD with OAA 1.7° - 4.0°

- $\sigma(\nu_e)/\sigma(\nu_\mu)$, $\sigma(\bar{\nu}_e)/\sigma(\bar{\nu}_\mu)$
 - 3-4% accuracy at 600 MeV (work in progress)
- Background (beam v_e , NC) for $v_\mu \rightarrow v_e$
 - Same flux at 2.5 deg. off axis for Hyper-K
- Correlation $(p_l, \theta_l) \leftrightarrow E_v$
 - Combination of data with different off-axis angles

Detector site secured, depth & diameter proposed.

- 8.8 m detector diameter, and 7 m diameter for the inner volume. Entire mass ~ 600 ton.
- Multi-PMTs are useful for resolving vertices close to the wall and accurate particle identifications.
- Basic design is ongoing, and installation procedure is being considered.
- International contributions welcome!

Summary

 Hyper-K will play a central role in exploring the future of particle physics and contribute to the future of astronomy. Expectations in 10 yrs HK:

- Mass ordering: 3.8-6.2 σ depending on sin² θ_{23}
- CP violation: 5σ discovery, > 60%
- Proton decay: $p \rightarrow e^+ \pi^0$: ~6x10³⁴ yrs etc.
- > 3σ sensitivity for the solar v spectrum up-turn
- ~70k events @10 kpc supernova
- ~4 events/yr diffuse supernova neutrino background
- The highlight of the civil construction, the dome excavation, was completed.
 Detailed design of tank lining and photosensor support structure completed.
- 50 cm PMT delivery is ongoing and on schedule.
- Beam intensity increase/IWCD construction is on the way.
- Data-taking is expected to start in 2027!

Poster presentations

- I. Recent T2K oscillation analysis results and Hyper-K sensitivity to accelerator neutrino oscillations (D. Carabadjac)
- 2. <u>The intermediate Water Cherenkov Detector</u> for the Hyper-Kamiokande Experiment (L. Cook)
- **3.** <u>Diffuse Supernova Neutrino Background</u>: Insights from Super-Kamiokande & Prospects with Hyper-Kamiokande (A. Beauchene)
- 4. Enhanced Event Reconstruction at Hyper-Kamiokande and WCTE using **Graph Neural Networks** (A. Ershova, C. Quach)
- **5.** <u>Neutrino Beam Simulations</u> for the Hyper-Kamiokande experiment and target alternatives (L. N. Machado)</u>
- Large scale measurement of the performance of the Hyper-Kamiokande <u>50cm PMTs (</u>C. Bronner)