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Long-baseline neutrino oscillations:
unknown PMNS parameters

● Goals for next generation 
experiments:

● Determine the neutrino mass 
ordering

● Measure δCP and determine if 
CP is violated

● Determine the octant of θ23
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Long-baseline neutrino oscillations:
Is the 3-flavor model correct?

● Measure neutrino and antineutrino 
oscillation as a function of L/E

● Does the three-flavor model 
describe the data?

● If yes: measure the mixing angles, 
mass splittings, and CP phase

● If no: characterize the new physics
● Need for a global program: 

different energies, matter effects, 
systematics, etc.
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Long-baseline oscillations as part of a 
broad physics program

● Large, sensitive underground detectors are 
excellent to:

● Observe supernova burst neutrinos
● Measure solar and atmospheric neutrinos
● Search for new physics (nucleon decays, 

cosmogenic dark matter, etc.)
● Intense beams with capable near detectors 

are excellent to:

● Search for new physics produced in the 
beamline

● Search for new physics in rare interactions 
(i.e. neutrino tridents)
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● Wideband (anti)neutrino beamline with >2MW intensity
● Underground, modular LArTPC Far Detector with ≥40 kt fiducial mass
● Movable LArTPC Near Detector with muon spectrometer and 

separate on-axis detector
● Global collaboration of >1400 scientists and engineers
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LBNF beamline: world-leading intensity
● Very high flux between oscillation 

minimum and maximum, with 
coverage of second maximum

● ACE-MIRT upgrade enables >2MW 
beam by ~doubling frequency of 
spills, and can be achieved before 
operations begin

Flux at ND
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LArTPC: flavor & energy reco over a 
broad range of topologies

● 60% of interactions at DUNE energy have final state pions → LArTPC 
enables precise hadron reconstruction

● Excellent e/μ and e/γ separation

DUNE Horizontal Drift
simulated 3.0 GeV ν

μ

DUNE Horizontal Drift
simulated 2.5 GeV ν

e
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Far detector: two readout technologies

● Horizontal drift (HD, left) using wire readout planes, four drift regions
● Vertical drift (VD, right) using two 6.25m drift regions and central cathode

● Simpler to install → first DUNE FD module will use vertical drift
● VD is baseline design for modules 3 and 4

JINST 15 T08010 (2020) arXiv:2312.03130 (2023)
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Near detector: systematic constraints 
for precision physics 

● Main purpose: enable prediction of 
Far Detector reconstructed spectra

● Movable detector system: LArTPC 
with muon spectrometer

● Off-axis data in different neutrino 
fluxes constrains energy dependence 
of neutrino cross sections

● Same target, same technology → 
inform predictions of reconstructed Eν 
in Far Detector

TMS

ND-LAr

SAND
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Unique challenge for ND: pile-up

● Neutrino pile-up: very high rate at 
near site motivates pixelated 
readout and optical modularity

● Pixel readout: Natively 3D 
information in raw data, for 
resolving activity that would overlap 
in 2D projections

● Optical modularity: For charge-light 
matching, to allow association of 
detached energy (e.g. from 
neutrons)

One beam spill at ND-LAr
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SAND: on-axis detector using KLOE 
magnet and calorimeter

● Fixed component of ND repurposes existing 
solenoid magnet and ECAL from KLOE

● Plan is to build a collider-like detector in a 
neutrino beam: low-density tracker surrounded 
by calorimetry in magnetic field

● Fine-grained, particle-by-particle reconstruction 
with very low rescattering, excellent for highly 
exclusive neutrino-nucleus measurements

● Being (carefully) taken apart at Frascati for the 
move to the US
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Far Detector energy spectra are 
sensitive to CP violation 

ν
e

ν
e

● If δCP ~ -π/2, DUNE will measure an enhancement in 
electron neutrino appearance, and a reduction in electron 
antineutrino appearance

● If the mass ordering is normal, DUNE will measure a much 
larger enhancement in electron neutrino appearance, and a 
reduction in electron antineutrino appearance

● MO, δCP, and θ23 all affect spectra with different shape → 
additional handle on resolving degeneracies

● If new physics is present, there may be no combination of MO, 
δCP, and θ23 that fits data

12 years

12 years
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MO & CPV significance
if nature is kind 

● For best-case oscillation scenarios, DUNE has 
● >5σ mass ordering sensitivity in 1 year
● >3σ CPV sensitivity in 3.5 years

Eur. Phys. J. C 80, 978 (2020)
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MO & CPV significance
if nature is unkind 

● For best-case oscillation scenarios, DUNE has 
● >5σ mass ordering sensitivity in 1 year
● >3σ CPV sensitivity in 3.5 years

● For worst-case oscillation scenarios, DUNE has 
>5σ mass ordering sensitivity in 3 years

● In long term, DUNE can establish CPV over 75% 
of δCP values at >3σ

● Arrows indicate assumed staging scenario

Eur. Phys. J. C 80, 978 (2020)
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Precision measurements of 3-flavor 
parameters

● Ultimate precision 6-16° in δCP

● World-leading precision (for long-baseline 
experiment) in θ13 and Δm2 → comparisons with 
reactor measurements are sensitive to new 
physics

Reactor uncertainty

Current NOvA uncertainty

Eur. Phys. J. C 80, 978 (2020)
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Beyond three flavors

● Broad range of L/E at ND and FD → search for non-SM oscillations
● High statistics neutrino and antineutrino measurements → search for CPT 

violation
● Very large matter effect → uniquely sensitive to some NSI

CPT

NSI
steriles

Eur. Phys. J. C 81, 322 (2021)
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Natural neutrino sources at DUNE FD
● DUNE FD will observe atmospheric, 

solar, and supernova neutrinos
● Argon target gives unique sensitivity 

to MeV-scale electron neutrinos
● νe + 40Ar → e- + 40K* (Eν > 1.5 MeV)

● νe + 40Ar → e+ + 40Cl* (Eν > 7.5 MeV)
● νx + e- → νx + e-   (pointing)

● Highly complementary to other 
experiments (Hyper-K, JUNO) that 
predominantly see νe via IBD
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Particle & astrophysics with supernova 
burst neutrinos

● DUNE will observe ~thousands of 
neutrino interactions from a 
galactic supernova burst

● Time and energy spectra are 
sensitive to core collapse 
mechanism and stellar evolution

● Unique ability to observe 
neutronization burst, and 
determine neutrino mass ordering

● Channel tagging ν+e → ν+e 
enables ~5° pointing resolution 
(40 kt, 10 kpc)

Example pointing Mass ordering from SNB

Eur. Phys. J. C 81, 423 (2021)
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DUNE sensitivity to solar neutrinos
● Despite a large neutron background at low 

energies, DUNE has excellent sensitivity to 8B 
solar neutrinos above ~10 MeV, and discovery 
sensitivity to the hep solar flux

● DUNE can improve upon existing solar oscillation 
measurements via day-night asymmetry induced 
by matter effects → comparison with JUNO

● Current analysis assumes dedicated trigger and 
flash matching (needed for fiducialization)

400 kt-yrs

DUNE Preliminary

DUNE Preliminary
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Atmospheric neutrinos: angle 
reconstruction including hadrons

● Atmospheric neutrinos will be DUNE’s first data; 
aim to combine with long-baseline

● Including reconstructed hadrons substantially 
improves angle resolution, especially at lower 
neutrino energies

● Potential to extend to low energies has been 
studied phenomenologically, see Phys. Rev. Lett. 
123, 081801 (2019)

● DUNE analysis in progress

Phys. Rev. X 13, 041055 (2023)
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DUNE construction: Phase I
● Full Near and Far Site facility
● Two LArTPC modules (VD & HD), each 17 kt Ar
● 1.2 MW upgradeable neutrino beamline
● Movable LArTPC ND+muon catcher, SAND

Completing Phase I is highest priority in P5 report:
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DUNE construction: Phase II
● Two additional FD modules
● Beamline upgrade to >2MW (ACE-MIRT)
● More capable Near Detector (ND-GAr)

P5 report endorses FD3, ACE-MIRT, and MCND in 
the next decade, and R&D toward FD4
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Building DUNE: construction schedule
● Far site excavation is complete
● Next: Building & Site Infrastructure work 

until mid-2025
● Cryostat warm structure is on its way to 

US from CERN to be installed in 2025-
26

● Far Detector installation in 2026-27
● Purge and fill with argon in 2028
● Physics in 2028 or early 2029
● Beam physics with Near Detector 2031
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Phase II FD: additional mass + 
opportunities to expand physics reach

● Vertical Drift module is the baseline design for 
Phase II FD modules

● Pursuing low-hanging improvements to light 
collection for FD3, including Aluminum Profiles 
with Embedded X-ARAPUCA, essentially 
integrating light detectors into field cage

● FD4 is the “Module of Opportunity”, and more 
ambitious designs are being considered, 
including pixel readout, integrated charge-light 
readout, low background modules, and non-
LAr technologies

Improved light collection for FD3 (APEX)

Prototype for possible FD4 readout (SoLAr)
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ProtoDUNE: preparing for second runs
● Successful prototype of horizontal 

drift at CERN Neutrino Platform in 
2018 (ProtoDUNE-SP)

● ProtoDUNE-HD completed filling 
30th April, running since May, with 
beam turning on at 6pm tomorrow 
evening

● LAr will be transferred to 
ProtoDUNE-VD in October for 
running starting in early 2025

3 GeV π+

π+ n→π0 p 

π0 →γγ

stopping 
proton

cosmi
c 
muon
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ND-LAr 2x2 prototype: DUNE’s first 
detector in a neutrino beam

● Individual ND-LAr prototype modules        
have been operated with cosmics at Bern

● “2x2” is a four-module integration test in      
the Fermilab NuMI beam

● Re-purposed MINERvA scintillator and 
calorimeter planes mimic the role of TMS in 
the DUNE ND

● Will demonstrate reconstruction with 
natively 3D readout in a neutrino beam with 
similar event rate to DUNE
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ND-LAr 2x2 prototype: towards data
● Detectors installed 

inside cryostat
● Cooling and argon 

filling is complete
● Currently undergoing 

cold commissioning
● Monitored with 24-

hour shifts since 
early June
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Summary
● DUNE is a long-baseline oscillation experiment and neutrino observatory

● Unique and complementary reach in oscillations, MeV-scale neutrinos, and BSM searches
● DUNE has an active prototyping program, with excavation complete and components 

under construction → start of science in this decade
● See also 33 DUNE posters!
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Backup Slides
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Resolution to disappearance 
parameters

● Δm2 is measured by location of dip in 
disappearance spectrum → high rate and on-
axis location gives improved sensitivity relative 
to current LBL experiments

● Comparison with similar JUNO measurement 
is sensitive to new physics

● Resolution to θ23 is complicated; strongly 
dependent on true parameter values, and 
correlated with other parameters

sin2θ
23

 = 0.58
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CP violation and δ
CP

 resolution
● δCP resolution is best at 0 and π because 

appearance at maximum is proportional to 
sin(δCP)

● DUNE (and most experiments) typically quote 
median sensitivities, but statistical fluctuations 
and systematic uncertainties give a range of 
possible values shown by the bands
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Resolving parameter degeneracies with 
spectral information

● DUNE resolutions projected into different 
2D spaces, for two different exposures

● Degeneracy between θ13 and θ23 in 
DUNE data is resolved by reactor θ13 
data, which resolves θ23 octant

● For maximal δCP, CP conserving values 
are strongly excluded but resolution is 
relatively poor

DUNE only
(No θ

13
 constraint)

sin2θ
23

= 0.58, δ
CP

= -π/2
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Resolving parameter degeneracies with 
spectral information

● For non-maximal values of δCP, an 
additional degeneracy arises because 
P(νμ→νe) ~ sinδCP at maximum

● DUNE can largely resolve this using 
its spectral information

● Combining experiments is challenging 
→ we all need to publish this full 4D 
space!

DUNE only
(No θ

13
 constraint)

sin2θ
23

= 0.58, δ
CP

= -π/4
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Supernova pointing and multi-
messenger astronomy

● DUNE can identify elastic 
scatters by the absence of 
nuclear de-excitation 
photons

● Enables pointing resolution 
as good as ~5° depending 
on location

● Paper is imminent

20 MeV ν
e
 CC10 MeV ν+e→ν+e

40 kt, 10 kpc
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Supernova spectral measurements 
with DUNE + HK data

● Supernova spectrum can be parameterized by 
average neutrino energy and α

● DUNE and HK measure different fluxes → 
complementary ability to constrain spectral parameters

● DUNE Phase II (40 kt) shown in figure

Phys. Rev. D 97, 023019 
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BSM searches with the Far Detector
● DUNE Far Detector is sensitive to rare 

processes (nucleon decay, n-n oscillation, etc.) 
and new physics of cosmogenic origin

● Key strengths of DUNE:
● Ability to detect low-energy particles (for iBDM, 

signal is a soft e/p and spatially proximate e+/e- 
pair)

● Ability to reconstruct direction including hadrons 
(i.e. for BDM produced in Sun or Galactic Center)
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BSM searches with the Near Detector
● DUNE Near Detector is sensitive to rare 

processes in the beamline (HNL, LDM) and 
to BSM contributions to neutrino interactions 
(ν tridents)

● Key strengths of DUNE:
● 120 GeV proton beam and very high intensity
● LAr ND with 50-70t fiducial mass
● Low density ND (SAND) → increased S/B for 

decays in ND volume

Phys. Rev. D 100, 115029 (2019)
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Nucleon decay p→K+ν

● Hyper-K can identify p→K+ν by timing, and identification of monoenergetic muon 
from kaon decay, with sensitivity to τ = 3x1034 yrs

● DUNE can image all three particles, Phase II sensitivity beyond current Super-K limit
● If a signal is observed in Hyper-K it will be valuable to confirm the detection with a 

very different detector, different backgrounds, etc.

 Phys. Rev. D 90, 072005 (2014)

Super-K

t – TOF (ns)
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Boosted dark matter from sun via 
hadronic channels

● χN→χX hadronic processes
● Reconstruct direction in DUNE 

FD LArTPC, point back to Sun
● Low hadron thresholds are 

critical → at lower boost factors, 
SK/HK does not have sensitivity 
because protons are invisible

● DUNE can surpass current 
limits from PICO

Phys. Rev. D 103, 095012 (2021)
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Sensitivity to Heavy Neutral Leptons 
produced in beam, decay in ND

● N → νee, νeμ, νμμ, νπ0, 
eπ, μπ

● Assumes 22 MW-yrs and 
zero backgrounds

● Reaching zero 
background not 
demonstrated, may be 
possible with ND-GAr

J. High Energ. 
Phys. 2020, 
111 (2020)
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Light dark matter in beamline via χ-e

● χe→χe scattering in ND-LAr, 
from boosted DM produced in 
the beamline

● Backgrounds from νe→νe 
have different spectrum

● DM and ν have different 
dispersion, and looking at off-
axis ND-LAr data improves the 
statistical separation

● Sensitivity at low mass is 
potentially world-leading
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ProtoDUNE-SP: performance papers 
published in 2023

● Two ProtoDUNE reconstruction performance papers:

● Identification and reconstruction of Michel electrons
● Performance of Pandora for cosmics and beam particles

Phys. Rev. D 107, 092012 (2023)
Eur. Phys. J. C 83, 618 (2023)
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Accelerator Complex Evolution:
Main Injector Ramp & Target
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Accelerator Complex Evolution:
Main Injector Ramp & Target

● Many beamline 
components are 
designed for 2.4 
MW

● Others can likely 
be operated to 2 
MW with minor 
modifications

● Target is the most 
critical 
component
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P5 report in the US strongly endorses 
DUNE Phase I & II

● During the next decade (2024-
2034), P5 recommended:

● Highest priority: Complete DUNE 
Phase I and begin operations

● Implement ACE-MIRT 
accelerator/beamline upgrades 
before operations begin

● Design and build FD3 and MCND
● Perform R&D toward FD4
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Importance of maintaining P5 baseline 
funding scenario

● Less favorable funding scenario includes only FD3, without ACE-MIRT accelerator 
upgrades, MCND

● Substantial delays to Phase I physics goals (MO and maximal CPV), and 
elimination of long-term precision program, including CPV over 75% of δCP values
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