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MILAN, JUNE 2024 Note: | am not a phenomenologist! Goal of
this presentation is to describe
phenomenology that informs design and
analysis of the experiments and to illustrate
concepts with interesting recent work.
Thanks to pheno colleagues for their input,
especially P. Denton (BNL)!

LBL PHENOMENOLOGY, ETW, NEUTRINO 2024




BASICS OF LONG-BASELINE OSCILLATION EXPERIMENTS

= Probability of oscillation depends on L/E, the neutrino mixing matrix, neutrino mass differences, and the matter effect

= Analysis of appearance and disappearance signals, combined with good understanding of the unoscillated flux and of
neutrino interactions and reconstruction in the detector, can be used to precisely measure neutrino oscillation parameters
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NEUTRINO MIXING PARAMETERS

Flavor eigenstates Mass eigenstates
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NEUTRINO MIXING PARAMETERS

Normal ordering
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NEUTRINO MIXING PARAMETERS

Inverted ordering
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CURRENT STATUS OF MEASUREMENTS

= See yesterday’s talks for details of global fits for oscillation parameters and results from operating experiments
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https://arxiv.org/abs/2007.14792

WHAT CAN WE LEARN FROM LONG-BASELINE OSCILLATIONS!?

" What is the neutrino mass ordering!?
= |s CP violated in neutrino oscillation?

=  Symmetry and symmetry violation has been a major driver of
discovery in particle physics

= |eptogenesis requires CPV in high-energy Lagrangian (incl. right-
handed neutrinos)

" No model-independent connection between low-energy (PMNS) CPV
and high-energy CPV required for leptogenesis, though some models

predict sufficient CPV from PMNS

LBL PHENOMENOLOGY, ETW, NEUTRINO 2024

62

Granelli, Pascoli, Petcov,
Phys.Rev.D 108 (2023) 10, L101302

_, Normal Ordering, § = 37 /2

10-7
1078
1077k
10—10
10—11
10—12
10—13
e NS T
]Ml (GGV)

Parameter space of viable leptogenesis

with CP violation coming only from d¢p

8

log,o (AM/M;)


https://inspirehep.net/literature/2677299
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WHAT CAN WE LEARN FROM LONG-BASELINE OSCILLATIONS!?

Everett, Ramos, Rock, Stuart,

= What gives rise to the neutrino flavor structure? Int.Mod.Phys.A 36 (2021) 30, 2150228
= Why is the structure of the v mixing matrix different from that of the quark \ | | | :
mixing matrix? 4\ H
| 1
®  What flavor symmetry can produce this pattern of mixing and how is it \ |
broken? Zal L
z I
= Is v <>v, mixing symmetric? If so, why — possible new symmetry? —i i
= [s the neutrino mixing matrix unitary? Are there BSM effects impacting %2_
neutrino oscillation? 3
- o A
= Precision measurements allow model discrimination e
= Many flavor and BSM models make specific predictions for values of
oscillation parameters
0
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https://inspirehep.net/literature/1773069

EXPERIMENTAL OUTLOOK

= See experiment talks for experimental details and sensitivity projections — expect next generation experiments
will provide unambiguous determination of the mass ordering, precise measurements of PMNS parameters
including 0cp and sufficient precision to be sensitive to non-unitarity of the PMNS matrix and other BSM effects!

Results now! Taking data soon! UNDER CONSTRUCTION NOW! Being designed now!
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OSCILLATION PROBABILITY

= Two-flavor mixing:

Py sp,azp = sin’ (20) sin® ( e

= Three-flavor mixing in matter:
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OSCILLATION PROBABILITY

= Two-flavor mixing:

Pospotp = sin? (26) sin® (

= Three-flavor mixing in matter: 2= GINA2 Matter effect from
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COMPUTING OSCILLATION PROBABILITIES

= Experimental results require calculating oscillation
probabilities many millions of times for fits and
statistical analysis

= Ex: NOVA frequentist oscillation analysis requires
millions of Feldman-Cousins pseudoexperiment fits be
performed using HPC resources

= Computational cost of these analysis can be reduced by
improving the speed of algorithms that calculate

oscillation PrObabilit)’ I

= Computational advances will be critical in facilitating
analysis at future experiments
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https://inspirehep.net/literature/2783495

OSCILLATION PROBABILITY

= Two-flavor mixing: . Ve Appearance Probability -
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OSCILLATION PROBABILITY
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EVENT RATES

= Accelerator-based neutrino datasets, particularly for v,

appearance channels, are small for current experiments:

NOvVA-T2K joint fit
— v w

Ve 82 94 vy candidate events in

) Meam  Gata used for NOVA-
Ve 33 16 T2K joint fit

v, 211 318

v, 105 137

= Higher power beams and larger detectors in next-
generation experiments provide major increase in
sensitivity from statistics alone (assuming uncertainties
can be controlled sufficiently to take advantage of the
statistics)
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Number of events/50 MeV

T2HK: Expected v, appearance spectrum
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https://inspirehep.net/literature/1672899

COMPLEX PARAMETER SPACE

= Experiments are sensitive to many parameters, if we can resolve degenerate effects

L=290 km, E=0.6 GeV

0.3 1

— Normal Ordering Baseline of 290 km
— Inverted Ordering (very little matter effect)

o
N
L

=]
=

Asymmetry measurement alone has degenerate possible
values for both 6cp and mass ordering

0.0

Neutrino-Antineutrino Asymmetry

Matter-antimatter asymmetry
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COMPLEX PARAMETER SPACE

= Experiments are sensitive to many parameters, if we can resolve degenerate effects

L=1295 km, E=2.5 GeV

0.4

Neutrino-Antineutrino Asymmetry

—— Normal Ordering
—— Inverted Ordering
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Baseline of 1295 km
(large matter effect)

Asymmetry measurement alone has degenerate possible
values only for d¢p -- mass ordering degeneracy lifted

Matter-antimatter asymmetry



COMPLEX PARAMETER SPACE

= Experiments are sensitive to many parameters, if we can resolve degenerate effects

Appearance Probability (L=1295 km)

0.200 H
 berm 3w Baseline of 1295 km
1 T Oem A (large matter effect)
0.150 1
3 0125 Energy dependence of oscillation can resolve d.p degeneracy
E 0.100 +
50.075-
g
0.050
0.025 -
0.000
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Energy (GeV)
% Appearance probability
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TESTING PMNS UNITARITY

Ellis, Kelly, Li, JHEP 12 (2020) 068

Hypothetical infinite precision measurements in 0,3 — 0,5 space:
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1
,"’I combining values obtained from long-baseline oscillation
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https://inspirehep.net/literature/1810026

TESTING PMNS UNITARITY

Ellis, Kelly, Li, JHEP 12 (2020) 068

= Current and projected measurements

1___] L i R ) A I IIIIIII LI LI IIIIII | IIIIIII IF\I TTTTT in 9 _e space: combining Values
opErA P TN | e uture 2P . s
ur BUNE B, | obtained from Iong-l?asellne oscillation
0.75 — ST a measurements (v,, disappearance, Ve
T9K /NOVA _ d appearance, and v, appearance) with the
g [y ‘ DUNE/T2HK P, reactor measurement of 0,5 to test
> o5k = . normalization of 34 column of mixing
CI matrix
Daya Bay : Daya Bay = Future experiments dramatically tighten
0.55~Current e | long-baseline contours such that if
k= I/ I S T unitarity were violated, they would not
0 - I]IIli Ll IlIIII Ll L Ll Ll IIIIII Ll IIIIII L L Ll overla‘p Wlth the hlgh Slgnlflcance We See In
1073 1072 107! 1 i 102 107! 1 current data

sin2 013 SiIl2 013
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ANALYZING CURRENT DATAWITH NON-UNITARY PARAMETERS

1.5

0.5}

Ferero, Giunti, Ternes, T 6rtola, Phys.Rev.D 104 (2021) 7,075030
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i N ]
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parameters in normal
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No significant increase in
overlap of allowed regions
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LIGHT STERILE NEUTRINOS AT LONG-BASELINE EXPERIMENTS
Nice review article: Palazzo (2020)

= 3+| model of light sterile neutrinos introduces one
additional mass splitting, 3 additional mixing angles, B _
and two additional phases B : | | s b
>y ; o 2 CP
" Long-baseline experiments are uniquely sensitive to the [ ] s & Conserving
additional CP phases S o S
= Oscillations in vacuum are independent of 034 and 834 % o
but this is not the case in matter, so experiments with  — — e —— “””‘-“;1_8130
sufficient matter effect are sensitive to these 313
parameters T R
& BRI
= Simultaneous measurement of phases is possible in % o % \(/:.P latin
next-generation LBL experiments E 1] i E oene

~180 ] Lerilainna :—l
-180 -135 =90 -45 0 45 90 135 18C180-135 -90 -45 0 45 90 135 180
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LIGHT STERILE NEUTRINOS AT LONG-BASELINE EXPERIMENTS
Nice review article: Palazzo (2020)

= 3+| model of light sterile neutrinos introduces one
additional mass splitting, 3 additional mixing angles,
and two additional phases

" Long-baseline experiments are uniquely sensitive to the
additional CP phases

= Oscillations in vacuum are independent of 034 and 334
but this is not the case in matter, so experiments with
sufficient matter effect are sensitive to these
parameters

= Of course, additional parameters introduce potential
for degeneracies that can thwart sensitivity
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NSI AT LONG-BASELINE EXPERIMENTS

= Non-standard interactions (NSI) can modify neutrino
oscillation probabilities in matter, impacting
measurements at long-baseline experiments (and
allowing these experiments to be sensitive to NSI!)

LBL PHENOMENOLOGY, ETW, NEUTRINO 2024
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https://inspirehep.net/literature/2743292

NSI AT LONG-BASELINE EXPERIMENTS

= Non-standard interactions (NSI) can modify neutrino Dutta, et al.. 2024
oscillation probabilities in matter, impacting

measurements at long-baseline experiments (and
allowing these experiments to be sensitive to NSI!)

10—10
" Projected DUNE limits on NSI mediated by light
neutral scalar fields in this analysis appear similar to \i:lo—ls
limits from astrophysical sources — complementary 3
sensitivity! — and are based on all SNSI parameters

. 107
varying separately
—— Others
10—25 I I I 1
10-20 10715 10-10 10-° 100

mey(keV)
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NSI AT LONG-BASELINE EXPERIMENTS

= Non-standard interactions (NSI) can modify neutrino
oscillation probabilities in matter, impacting
measurements at long-baseline experiments (and
allowing these experiments to be sensitive to NSI!)

" Presence of scalar NSI dramatically enhances the
T2HK sensitivity to neutrino mass ordering in this
analysis because matter-antimatter asymmetry is
larger than for the SM matter effect
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EXPERIMENT COMPLEMENTARITY: EXTERNAL CONSTRAINTS

[ ] Precise measurements Of Z. Vallari, FNAL W&C Seminar
oscillation parameters can 0-25( Bayesian Cred. Tnt Both MO | Z
. I No reactor constraint (@)
be used to improve 02F g
measurements at other . -
. = 0.5 R

experiments S P o
- E (R — — g
. = 0.1F =
= Current generation of LBL N - ) %
experiments typically use o DOSE oy 5
. / r 1o ——2c @ e 3c 5

constraint on 0,5 from A

reactor eXPerimentS Note: change in 04 . 02’5 0.6
scale for y-axis sin 923
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Y | With reactor constraint 9
I >
e 0.09+ ['j
EE, i o
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“ 008+ E
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https://indico.fnal.gov/event/62062/contributions/279004/attachments/175258/237774/021624_NOvAT2K_JointFitResults_ZV.pdf

EXPERIMENT COMPLEMENTARITY: EXTERNAL CONSTRAINTS

Precise measurements of
oscillation parameters can
be used to improve
measurements at other
experiments

Current generation of LBL
experiments typically use
constraint on 0,3 from
reactor experiments

Next-gen LBL experiments
can measure 03
independently, but this in
turn depends on knowledge
of solar parameters
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Z.Vallari, FNAL W&C Seminar
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DUNE resolution on d¢p significantly
degraded in the absence of priors on solar
oscillation parameters. This also implies
that next-gen LBL experiments will have
some sensitivity to these parameters in

. . . 29
their oscillation measurements!
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EXPERIMENT COMPLEMENTARITY: UNDERSTANDING BSM EFFECTS

=  Fun problem to have: differentiating types of new
physics observed at next-gen experiments!

= NSI vs Sterile neutrino

= Additional freedom in sterile model suggests the 3+
model would likely provide a better fit to NSI data
than the 3v model, though fits tend towards large
values of the additional mixing angles

= Sterile neutrino introduces new oscillation

= Effects from NSI typically grow with energy with no
oscillatory L/E behavior

LBL PHENOMENOLOGY, ETW, NEUTRINO 2024

Example fit to DUNE NSI “data” assuming 3+| model
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de Gouvéa and Kelly, Nucl.Phys.B 908 (2016) 318-335

30


https://inspirehep.net/literature/1405293

EXPERIMENT COMPLEMENTARITY: UNDERSTANDING BSM EFFECTS

= Fun problem to have: differentiating types of new Appearance probabilities at DUNE and T2HK w/ NSI
physics observed at next-gen experiments! 5.1
= NSl vs Sterile neutrino DRSS h
Hyper—K No NSI
= Additional freedom in sterile model suggests the 3+1 0087 bUNENSI Case 1 e
model would likely provide a better fit to NSI data —  Hyper—K NSI Case 1 AL

= Sterile neutrino introduces new oscillation

than the 3v model, though fits tend towards large /T\“ 0.06 . - o —\3
L Fii? / \
el
= Effects from NSI typically grow with energy with no
oscillatory L/E behavior

values of the additional phases B 2 ;
A o'.‘ “ : '/-\ ““- :
AN A ¥ a\
= Data at a different baseline (T2HK) would in this i ‘

case point to NSI rather than sterile neutrinos 0 1000 2000 3000
because of the very different oscillation probabilities L/E, [km/GeV]|

relative to DUNE de Gouvéa and Kelly, Nucl.Phys.B 908 (2016) 318-335
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BSM BEYOND OSCILLATIONS

= |ong-baseline oscillation experiments are also very good at detecting other (non-oscillation) BSM signatures

108 Dominga, et al., JHEP 05 (2024) 258 Dutta, et al., arXiv:2402.04184 Batell, Huang, Kelly, JHEP 08 (2023) 092
7 a ] -~ LZ (elastic) — —
=--= Hyper — K L -- Dark side (elastic) Model Predictions
----- DUNE —— Higgs Portal Scalar
6 g JUNO ’\;\ 107" -=-- Heavy {ieutral Lepton
4 = : ~
& 5 T 109 ‘3'&'(&;;;&?::'74//“““
L =1 ~
< - @ -1 )
g — x 10 S mx=100 MeV
- 4 - *) ~._ —— DUNE
S 3 e ettt N P 11078 1— TK (approx.)
. S SRS St X | —— MicroBooNE
N 1 B 190 - 13\112(5911-09120]
------- i A I T [N N A N | e
10 100 200 300 200 = 1 102 10* 108 108 1010 1012
Mo [MeV] 0° 10?100 1 ot 10 10 orx [m]
X DM mass m, [MeV]
Proton Decay to an Exotic Neutral Particle Cosmic-Ray Long-Lived Particle
Boosted Dark Matter (100 MeV)
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https://inspirehep.net/literature/2772075
https://inspirehep.net/literature/2756023
https://inspirehep.net/literature/2653710

NUCLEAR PHENOMENOLOGY

= Modeling of nuclear effects in neutrino-nucleus interactions (and development of event generators that
incorporate these models) is an important input to the experimental program that requires collaboration among
neutrino experimentalists, nuclear experimentalists, and nuclear theorists
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Diagrams by Patrick Stowell

= NuSTEC collaboration is promoting and coordinating much of this effort — too much to list here!

= See agenda of recent NulNT 2024 workshop for the scope of work

= Also see talks on Thursday and Friday this week for details!
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https://nustec.fnal.gov/
https://indico.fnal.gov/event/59963/

CONCLUSIONS

= | ong-baseline neutrino oscillation is described by a complex parameter space, providing significant experimental
sensitivity to many different parameters and effects, but requiring experiments to disentangle degenerate effects

= Wealth of phenomenology investigating impact of new physics scenarios on future LBL experimental
measurements — these slides provide only a few examples to give a flavor of the topics being addressed

= Degenerate effects present in both 3-flavor and BSM scenarios make complementary experiments even more
critical as differences in experiment design (such as size of matter effect) can help resolve these degeneracies

= Theory efforts outside of long-baseline phenomenology also provide critical input to the LBL experimental
program (eg:“other” BSM physics, neutrino-nucleus interactions)

= The LBL experimental program offers an exciting opportunity to test a wide variety of models and potentially
discover new physics — the next decade (and the next talks) will be very exciting!
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