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Measuring neutrino masses with KATRIN Analysing plane (SAP)
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@ Spetroscopic investigation of tritium beta decay
@ MAC-E filter principle €= Adiabatic motion
@ Stepwise integral measurement of electrons

& Effective neutrino mass affects spectral shape at E,

& Final sensitivity: m, < 0.3 eV/c?

Future upgrade: TRISTAN Detector —> Siegmann #16
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@ Micro-structured golden filter with hexagon channels O(100pum)

@8 Observation not consistent with Rydberg model - extension

Systematics at sterile neutrino search with the TRISTAN detector upgrade

Completely different operation mode = without sterile v " active branch Rear wall as major bottleneck of current setup
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= Other systematics 5 onillon #260 B decay energy (keV) optimisation of the BSP and systematic reduction

Electron backscattering simulations for possible RW alternatives using Geant4
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Comparison of different RW scenarios @ Silicon micro-structure is most auspicious

@ Isotropic B-spectrum with N = 1 million e

9 @ Larger surface area for tritium accumulation ;
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