Contribution ID: 115 Type: Poster

²¹⁴Pb branching ratios measurement with XENONnT detector

Tuesday, 18 June 2024 17:30 (2 hours)

²¹⁴Pb represents one of the most common irreducible contaminant in rare-events physics experiments. In the XENONnT experiment, a LXe dual-phase TPC for direct dark matter searches, ²¹⁴Pb represents the dominant contribution in the electron recoil background below 40 keV.

This isotope undergoes beta decay into several 214 Bi excited states, generating electron/gamma events in the detector.

For several precision physics searches in XENONnT, such as solar-pp neutrino flux measurement, the accuracy demanded on this isotope branching ratios are still not currently available in the literature.

In this study, by exploiting 222 Rn calibration campaign, we report updated measurements of 214 Pb branching ratios.

Poster prize

Yes

Given name

Cecilia

Surname

Ferrari

First affiliation

Gran Sasso Science Institute

Second affiliation

Laboratori Nazionali del Gran Sasso

Institutional email

cecilia.ferrari@gssi.it

Gender

Female

Collaboration (if any)

XENON

Primary author: FERRARI, Cecilia (Istituto Nazionale di Fisica Nucleare)

Presenter: FERRARI, Cecilia (Istituto Nazionale di Fisica Nucleare)

Session Classification: Poster session and reception 1

Track Classification: New technologies for neutrino physics