# Neutrino energy scale measurements in DUNE using advanced computing Aleena Rafique, ANL Argonne On behalf of the DUNE Collaboration Neutrino 2024 **DEEP UNDERGROUND**

## **1. DUNE and DUNE-FD**

**NEUTRINO EXPERIMENT** 

#### **DUNE:**

- 1300 km baseline
- 40 kton active mass Liquid Argon Time Projection Chamber (LArTPC) Far Detector (FD) at SURF, South Dakota, 1.5 km underground [1]
- Multiple technologies for the Near Detector (ND) [2] at Fermilab
- Will measure neutrino oscillation probability to determine mass ordering and CP violation phase via (anti) $v_e$  appearance and (anti) $v_u$  disappearance; search for BSM physics and supernova neutrinos



## 2. Neutrino event displays

A few neutrino event displays from DUNE FD simulation. LArTPC experiments generate neutrino event images with unprecedented resolution.

#### **UNE-FD**, Simulation



#### **DUNE-FD**:

- Consists of four LArTPC modules each having a fiducial mass of 10 kt at SURF
- First module is a horizontal-drift LArTPC; second module will be a vertical-drift TPC; 3<sup>rd</sup> and 4<sup>th</sup> module technology R&D is ongoing.







| <b>3. ANL computing resources</b>     |                |                                                                                            |          | <b>4. Final State Interactions</b>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------|----------------|--------------------------------------------------------------------------------------------|----------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Argonne Leadership Computing Facility |                | Laboratory Computing<br>Resource Center                                                    |          | • When a neutrino interacts with the argon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | Resources      | Description                                                                                | Resource | Description                                | <ul> <li>nucleus, the initial state particles are generated.</li> <li>The initial state hadrons undergo secondary interactions, called final state interaction (FSI), with the other nucleons within the same nucleus.</li> <li>FSIs provide an important way to mask the identity of the primary vertex and can totally change the topology of the interaction and can also impact the final state energy.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       | Theta          | 11.7-petaflops supercomputer based on<br>Intel processors                                  | Bebop    | Intel Xenon CPUs with<br>1024 public nodes |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | ThetaGPU       | NVIDIA DGX A100 Tensor Core GPUs                                                           | Swing    | NVIDIA AI100 GPUs<br>with 6 public podes   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | ANL AI-Testbed | Machine learning based high-<br>performance computing applications                         |          |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | Polaris        | 44-petaflop peak performance<br>CPU/GPU, platform to test and optimize<br>codes for Aurora |          |                                            | Three Two particle particle topology Two particle topology Two particle topology Three particle topolo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                       | Aurora         | ANL's first exasclae supercomputer,                                                        |          |                                            | $- \frac{v_{\mu}}{\Delta^{++}} \qquad - v_{$ |

### projected peak performance of 2 exaflops







## **5. Sample generation and workflow**

- 5k events were generated using GENIE (version 3.4 AR23 20i) [3] standalone neutrino event generator using ANL computing resources.
- The same initial state interactions were propagated to the following FSI models.
- hA: the default model used in most current neutrino simulations. It only considers one hadron rescattering.
- hN: it considers multiple rescatterings until the hadron escape the nucleus.
- INCL++: the entire hadron-residual system changes through time steps.
- Geant4: Bertini Cascades (G4BC) [4], more sophisticated model.
- Here we present the impact on the final state particle energies.
- We plan to see the impact on the reconstructed neutrino energy to estimate the impact on the DUNE physics sensitivity studies.

# 7. Observations and results

- Initial versus final state energies are plotted for different FSI models.
- There seems to be a better agreement in initial and final state energies for the models hN and INCL++.







# **6.** Initial and final state energy sum

# The sum of all initial and final

state energies is calculated by

## $E_{i(f)} = E_h + E_l - E_n$

where  $E_{i(f)}$  is the initial (final) state particle energies;  $E_h$  is the initial (final) state hadronic energy sum;  $E_l$  is the primary lepton energy; and  $E_n$  is the hit nucleon energy.



#### Initial state particle energy sum

- We see that the initial state energies are consistent as expected.
- There is a discrepancy from the default tune as large as  $\sim 45\%$ .
- These discrepancies limit our model understanding and will impact the energy scale and reconstruction.



Final state particle energy sum

## 8. Summary and next steps

- This is the first demonstration of utilizing ANL computing for DUNE physics studies.
- We observed how FSI can impact the neutrino energy spectrum.
- In future, we plan to look into the dependence of the energy difference between different neutrino interaction types (QE, RES, DIS etc).
- We plan to reconstruct the neutrino energy using FD reconstruction tools.
- Calculate the effect of these uncertainties on the CP violation sensitivity studies





[1]: JINST 15, no. 08, T08008 (2020) [2]: Instruments 5 (4), 31 (2021) [3]: <u>https://arxiv.org/abs/1510.05494</u> [4]: Nuclear. Ins. Meth. Phys. Res A 804 (2015) 175-188

Contact: aleena@anl.gov



