Motivation

- Neutrons carry away missing energy from (anti)neutrino interactions
- SBN and DUNE will rely on generators to predict and correct for missing energy from neutrons
- Neutron tagging in liquid argon TPC can be used to:
 - Measure neutron production rates
 - Identify events with missing energy
 - Statistically separate neutrino and antineutrino interactions
- We use MicroBooNE [1] to demonstrate the feasibility of identifying neutrons in a LArTPC

Neutron Detection

- Above 100 MeV the neutron-argon inelastic cross section doesn’t depend strongly on energy
- Interaction length is approximately 70 cm
- Significant fraction of neutron-argon interactions produce secondary protons
- Secondary proton spectrum peaks at low energies

Event Selection

- PID selects proton candidates [3] from all PFPs (a)
 - Candidates must be 10 cm - 200 cm from neutrino vertex (b)
 - Candidates must be >21 cm from other PFPs (c)
 - Candidates must point back to neutrino vertex (d)

Event Selection Performance

- 60% of candidates are neutron-induced neutrons from the beam
- 48% of candidates originate from primary neutrons
 - 12% are secondary neutrons
- Zero efficiency below 100 MeV
 - Due to proton ID efficiency below 50 MeV
- If neutron produces a 50 MeV proton, average efficiency is 8.3%

References