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ABSTRACT

WHY GNNs? NEUTRINO CLASSIFICATION with OrcaNet

DIRECTION RECONSTRUCTION with OrcaNet TRACK ENERGY RECONSTRUCTION with OrcaNet/GraphNeT
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The KM3NeT next generation deep-sea neutrino telescopes are currently under construction in the Mediterranean Sea. Two water-Cherenkov neutrino 
detectors, ARCA and ORCA, are located in two different sites, south-est of Portopalo di Capo Passero (Italy) and close to Toulon (France), respectively. The 
KM3NeT/ARCA telescope, a cubic kilometer volume detector, is optimised for the detection of high-energy astrophysical neutrinos in the TeV-PeV range. Once 
completed, the detector will consist of 230 Detection Units, each housing 18 Optical Modules. In order to search for neutrino signals, a high background 
rejection power is needed and deep learning techniques provide promising methods for achieving this result. The flexibility of the so-called Graph Neural 
Networks (GNNs) suits perfectly the topology of a complex detector such as KM3NeT. This contribution will be focused on two interesting applications of 
GNNs: discrimination of signal events from the background, mainly composed of atmospheric induced events, and energy and direction event reconstruction.

Energy reconstruction of tracks is carried out on both the OrcaNet and 
GraphNeT DynEdge architectures. The same MC event sample, as well as the 
same loss function, is used for both GNNs. For each event, the GNN returns an 
energy prediction, as well as an uncertainty estimate for that prediction.

Graph representation:
- Each PMT hit is one graph node with features: position, time, direction, ToT.
- Each graph node is connected with its k = 16 nearest neighbors, measured by 

Euclidean distance.

Appropriate quality criteria have 
been applied to both the GNNs 
(uncertainty cut) and the 
standard maximum likelihood 
reconstruction to ensure the 
reconstruction quality. Both GNN 
architectures are shown to have 
similar performances.

Event sample:
- Training: 672160 events
- Validation: 133025 events
- Inference: 172484 events

The logarithm of the reconstructed energy with 
respect to the logarithm of the MC neutrino energy

The reconstruction of neutrino direction is performed by GNN composed of 3 
Edge Convolutional blocks followed by a fully-connected layer and 3 parallel 
layer one for each component of the neutrino direction: CosX, CosY and CosZ.

The training was performed with 900k events of ARCA21 equally divided 
among numuCC and anumuCC, while the validation and inference data-set  
were composed by 10% of events.

Graph node is composed of each PMT hit and is connected with its k =  16 
nearest neighbors. Position, direction and time are features used in the 
training .

Selection events:
Quality cut are applied for 
GNN sample. The 40% of 
events survived after cut.
The result for standard 
likelihood reconstruction takes  
into account a different event  
sample, more details can be 
found in [5]. 

GNN performances  could 
improve by using a larger 
number of nearest neighbors.

In order to search for neutrino signal, a high background rejection power is 
needed. This goal can be achieved by training the network to distinguish 
between atmospheric muons and neutrinos (cosmic and atmospheric). The 
resulting classifier will assign to each event a neutrino score, which is the 
probability of being a neutrino.

Real-time performance: 
GNN classifier has been running in 
the real-time framework [4] since 
June 2023 and the average time 
required to process a single event of 
the stream is:
- 230 ms if running on CPU
- 140 ms if running on GPU

Efficiency: 
By requiring neutrino score > 0.99996
we achieve:
- a muon contamination below 20% 
- an expected cosmic neutrino 

rate around 1.8 per month.

A set of objects, and the connections between them, can be naturally 
expressed as a graph. Graph Neural Networks (GNNs) are a class of deep 
learning methods designed to perform inference on data described by graphs. 
While a Random Decision Forest or a Boost Decision Tree require a very good 
knowledge of the variables to consider during the classification, GNNs do not, 
which means that GNNs and standard reconstruction algorithms are 
independent and they can run in parallel.  Contrary to what happen with a 
Convolutional Neural Network, GNNs do not require rigid pre-chosen spatial 
and temporal bins to model the detector. This makes GNNs perfectly suitable 
in the context of a spatially dynamic, moving and rotating detector such as 
KM3NeT [1].

In this work, 3 possible applications of GNNs have been explored (neutrino 
classification, direction and energy reconstruction) and 2 different network 
architectures have been taken into account: OrcaNet (based on ParticleNet 
[2]) and GraphNeT DynEdge [3].
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