

Universität

DARWIN

Neutrino physics with the DARWIN observatory

Diego Ramírez García and Ricardo Peres (University of Zurich), on behalf of the DARWIN collaboration

- Energy reconstruction
- 3D position reconstruction \bigcirc
- Discrimination between interaction types \bigcirc
- Next generation dark matter detector, with a 2.6 Ø x 2.6 height active volume (~40 tonnes) Designed to reach spin-independent sensitivity to weakly-interacting massive particle (WIMP) dark matter down to the neutrino fog [1]

Solar neutrino detection via electronic recoils [2]

- Neutrino scattering off electrons in the xenon atomic cloud
- Multi-flux measurement: pp, ⁷Be, ¹³N, ¹⁵O, pep
- Constrain the weak mixing angle from pp neutrinos
- Distinguish between high and low metallicity solar models

Neutrinoless double-beta decay of ¹³⁶Xe [3, 4]

- ¹³⁶Xe abundance of 8.9 % in ^{nat}Xe
- Q-value of $Q_{\beta\beta} = 2457.8 \text{ keV}$
- Expected energy resolution at $Q_{\beta\beta}$ of about 0.8 %
- Main backgrounds in ROI from detector materials, ²²²Rn, (cosmogenically activated) ¹³⁷Xe, and ⁸B solar neutrinos
- $T_{1/2}^{0v} > 3.0 \times 10^{27}$ yr (90 % CL) for a 50 tonne-year exposure (^{nat}Xe)

Coherent elastic neutrino-nucleus scattering [5, 6]

- Flavor independent detection
- Measurement of the ⁸B solar neutrino flux and spectral shape
- Potential first measurement of atmospheric neutrinos in a liquid xenon time projection chamber
- High-significance detection of supernova burst up to ~100 kpc

[1] J. Aalbers et al. (DARWIN collaboration), JCAP 11, 017 (2016) [2] J. Aalbers et al. (DARWIN collaboration), Eur. Phys. J. C 80, 1133 (2020) [3] F. Agostini et al. (DARWIN collaboration), Eur. Phys. J. C 80, 808 (2020) [4] F. Agostini et al. (DARWIN collaboration), Eur. Phys. J. C 83, 996 (2023) [5] J. Aalbers et al. (DARWIN collaboration), J. Phys. G 50, 013001 (2023) [6] R. Lang et al., Phys. Rev. D 94 (10), 103009 (2016)

