Supernova Neutrino Sensitivity of the COSINUS Experiment

COSINUS

Max Hughes on behalf of the COSINUS collaboration hughes@mpp.mpg.de Neutrino 2024

MAX-PLANCK-INSTITU FÜR PHYSIK

COSINUS Facility

- Direct search for dark matter using cryogenic sodium iodide (Nal) calorimeters
 - Distinguish nuclear recoils from ulletelectromagnetic interactions by measuring heat and light
 - First data taking is planned late 2024/early \bullet 2025

- Located in Laboratori Nazionali del Gran Sasso (LNGS)
- 7 m diameter by 7 m tall Cherenkov muon veto with 30 PMTs and 230 tonnes of water

Input Parameters

- Use two fluence models for supernova neutrinos
 - Quasi-thermal model fit to SN1987A events^a
 - 27 Solar mass simulation^b ullet
- Use GEANT4 to calculate detector efficiency of muon veto^c

Nal Calorimeter Sensitivity

Muon Veto Sensitivity

• Several neutrino processes in water were

calculated^e

- 85% of events are from inverse beta decay
- These calculations include oscillations in ulletvacuum to and from electron neutrinos^f
- Water tank is sensitive to 16 kpc assuming normal ordering and 1987A fluence

SN1987A Model

^aOdysse Halim *et al* JCAP11 021 (2021) ^bIrene Tamborra, et al Phys. Rev. Lett. 111 121104 (2014) ^cAngloher, G et al. *Eur. Phys. J. C* 84, 551 (2024). ^d Daniel Z. Freedman Phys. Rev. D 9, 1389 (1974)

^eK Scholberg et al. Snowglobes. software package. https://webhome.phy.duke.edu/~schol/snowglobes/. ^fA. S. Dighe and A.Y. SmirnovPhys. Rev. D 62, 033007 (2000)