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Monitoring low energy astrophysical
neutrinos in JUNO

With its unprecedented sensitivity to MeV-scale neutrinos, the Jiangmen Underground Neutrino Observatory (JUNO) will play an essential role in the emerging field
of multi-messenger astronomy, especially in capturing next galactic core-collapse supernova (CCSN). Two real-time monitoring systems have been designed to detect
the forecasted burst of neutrinos from a CCSN in JUNO. Here we present a dedicated CCSN monitoring system and its sensitivity to supernova neutrinos including a
variety of supernova models. Assuming a yearly false alert rate, JUNO expects to be sensitive to neutrinos from a 30 M  progenitor up to 370 (360) kiloparsecs,
with normal (inverted) mass ordering. The possibility to boost the CCSN sensitivity will be presented, including the one to low energy all-flavours neutrino events,
made accessible with JUNO’s Multi-messenger trigger system, which aims to reduce energy thresholds to approximately 20 keV.
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Figure 1: JUNO schematic [1]

CCSN Real Time Monitor System

The real-time monitoring system aims to provide early alerts and record CCSN
data comprehensively. To ensure redundancy, the design includes both a

prompt monitor and an online monitor. If an a
internal collaboration and the astronomical community [2].

Online Monitor: Prompt Monitor:
® Implemented on data acquisition(DAQ) ® Implemented on electronics board.
® Based reconstructed events ® Based on trigger.
® Accurate alert efficiency. ® Fast alert time
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Figure 3: The schematic overview of JUNO § real time monitor system.
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Figure 4: Sensitivity of prompt monitor (a) and online pre SN monitor (b)

for different models [2].

SN monitor:
»100% alert efficiency for Small >100% alert efficiency for Betelgeuse.
Magellanic Cloud (SMC). > Alert Time: 3~120 hours before SN
» Alert Time: 15~30 ms. explosion.
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Pointing Performance

€ Based on anisotropy of the IBD events.
€ Betelgeuse-like star pre-SN pointing:
56° (81°), NO (10) for 15 M » Patton.
e 4 cancie e @ Typical CCSN at 10 kpc SN pointing:
nelelgeuse 26° (23°), NO(IO) for 13 M © Nakazato.

Figure 5: Sky-map of pointing resolution
for pre-SN and SN cases [2].
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Core-Collapse Supernova(CCSN) Neutrinos

—_— E—
12c NC, EP= 15.1 MeV

BeNe,
EP=37M
v=3 eV

Inverse Beta Decay (IBD):

BD,E'-18Mev] M Anti-electron neutrino.

B Primarily high energy (O(10MeV)).
B Minimal backgrounds.

Proton elastic scattering (pES):

B All neutrino flavours.

B Lower energies. If 20 keV cut, event
number ~ 6000.
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Figure 2: The neutrino event spectra with respect
to the visible energy in JUNO for a CCSN at 10kpc [1].
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Table 1: Expected Neutrino Event Number @ JUNO (CCSN @10kpc)

Multi-Messenger(MM) Trigger System
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Figure 6 : MM trigger efficiency [3]

® A multi-messenger transient machine.

® Aims to reach ~20 keV energy threshold.

® Likelihood algorithm on processing unit
(PU) can remove 99.97% dark noise.

® Challenge from high rates of 1*C B-decay.

B =l Fx il io s

Figure 7 : Multi-messenger trigger
processing unit — TeraBox 1100L

Other Astrophysical Potential

2D Bayesian Block Algorithm(BBA)

A Bayesian Block Algorithm[4] on PU
searches for bursts in triggered event
time series. New implementation using a
2D time-energy BBA search aims to
extend JUNQ's alert sensitivity.
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Figure 8: BBA will generate more than one block
when time series are clustered.

If a timepoint's energy matches the
background, its size is 1. If it matches a
supernova neutrino, its size is greater
than 1.
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Figure 9: 2D BBA adjust the time point size with
another dimension like energy.

€ Solar neutrinos from the pp chain, which require a very low energy threshold. Need to
precisely measure the 1*C spectrum and pile-up events [5].

€ Neutrino magnetic moment: can be tested by measuring electron elastic scattering

(eES) cross section precisely [6].

€ Binary neutron star (BNS) merger neutrinos. When BNS merge, neutrino emission
luminosity can also achieve about 10°3erg/s [7], similar to that of a supernova.
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