Contribution ID: 197

Type: Poster

Detecting High-Energy Neutrinos from Galactic Supernovae with ATLAS

Friday, 21 June 2024 17:30 (2 hours)

ATLAS, a collider detector, can measure the flux of high-energy supernova neutrinos, which originate in the circumstellar medium from days to months after the explosion. Simulating predicted fluxes, we find at most around 0.1–1 starting events and around 10–100 throughgoing events from a supernova 10 kpc away. Possible Galactic supernovae from Betelgeuse and Eta Carinae are considered as demonstrative examples. We conclude that even with limited statistics, ATLAS has the ability to discriminate among flavors and between neutrinos and antineutrinos, making it a unique supernova neutrino observatory.

Poster prize

Yes

Given name

Alex

Surname

Wen

First affiliation

Harvard University

Second affiliation

Institutional email

alexwen@g.harvard.edu

Gender

Male

Collaboration (if any)

Primary author: WEN, Alex (Harvard University)

Co-authors: KHEIRANDISH, Ali (University of Nevada Las Vegas); ARGÜELLES, Carlos; MURASE, Kohta

Presenter: WEN, Alex (Harvard University)

Session Classification: Poster session and reception 2

Track Classification: Supernova neutrinos