# **Sterile Neutrino Oscillation Searches using the PRISM Technique within VALOR at SBND**

Beth Slater: <u>b.slater2@liverpool.ac.uk</u> On Behalf of the SBND Collaboration Supervised by Prof. Costas Andreopoulos and Dr Rhiannon Jones

# **SBND** Physics

SBND is one of 3 detectors along a v<sub>u</sub> beam at Fermilab [1] forming the Short-Baseline Neutrino programme. This has the aims of:

- Searching for sterile neutrinos
- Studying neutrino-argon interactions

UNIVERSITY OF LIVERPOOL

Searching for new physics

Oscillation searches at SBND:

PIAT LUX

- Will measure about 2 million neutrino-argon interactions each year  $\rightarrow$  largest dataset
- Short baseline of  $110m \rightarrow$  sensitive to very fast oscillations



Field Cage to maintain constant electric field

1 of 24 photon detection modules: 5 PMTs, 4 **X-ARAPUCA** pairs (light collection boxes)

 $\succ$  Large squared mass splittings, in the region of prior hints

SBND has recently completed the filling with LAr stage and is currently in the commissioning/calibrations stage.

### **VALOR Neutrino Fitting Framework**

VALOR simultaneously fits for oscillation and systematic parameters.

- Capable of complex fits using combinations of oscillation channels and inclusive or exclusive samples
- Unique granularity by defining systematics by reaction mode
- Obtains explicit systematic constraints \*

Use post fit parameters to inform targeted modifications to the analysis:

- $\clubsuit$  Improve interaction systematic constraints  $\rightarrow$  exclusive and semi-exclusive topologies
- Improve flux systematic constraints  $\rightarrow$  off-axis bins (PRISM) \*\*

#### The PRISM Concept

Muon-neutrino CC Events Mean Energy 0.800

The PRISM concept uses measurements from multiple off axis

#### Improvements with PRISM

Test if analysis is capable of correctly determining applied tweaks to a subset of dominant parameters by assigning:

- Appropriate parameter pulls
- Sensible corresponding uncertainties \*

Compare results from inclusive fits under the no-oscillation hypothesis using PRISM3 and standard SBND.

Repeat the following for 5,000 sets of tweaked parameters:

**Simulation Data** Construct Calibration/test predictions! beam data v/e/h interaction data Beam monitors •  $\pi$  and  $\kappa$  data

Construct "Data"

Subset of systematic parameters Tweak parameters



#### (OA) locations. These samples have different energy spectra and compositions. Moving off axis:

- Ratio of muon to electron neutrinos decreases
- Electron neutrino energy \*
  - spectrum is constant
- Muon neutrino energy spectrum has decreased mean (shown)

#### **Motives for using PRISM:**

- Improved systematic constraints and degeneracy resolution
  - $\succ$  Differing energy in each sample
    - The observables are not the same in each sample
    - Extra observable  $\rightarrow$  more handles on the systematics
- Enhanced oscillation sensitivity

#### **SBND-PRISM** SBND Front **PRISM3** Boundaries Sees up to 1.6° off axis (OA) Beamline



## **Comparison of Postfit Parameter Pulls**

---- SBND ---- PRISM3

- SBND gives correct pull **81%** of the time
- PRISM3 gives correct pull 88% of the time

----- SBND

- ➤ 74cm OA
- $\succ$  Close to target
- Systematics still dominate
  - Statistics large in OA samples

**SBND: standard whole detector** 

approach, integrated across all off axis angles.

**PRISM3: splitting SBND into 3** angular bins with ~equal statistics (shown)

○ 0.0° 4m 0.84° 0.74 x-axis (m)

[1] Acciarri R, et al. Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in them Fermilab Booster Neutrino Beam. 2015.

[2] Jones R. Status of the Short-Baseline Near Detector at Fermilab. ICHEP 2022. [3] Del Tutto M., et al. SBND-PRISM: Sampling Multiple Off-Axis Fluxes with the Same Detector. APS April Meeting 2021.



Using SBND-PRISM has been demonstrated to consistently improve systematic constraints for a variety of dominant parameters.