Contribution ID: 483

Type: Poster

Event by Event classification of alpha-n and IBD Interactions at SNO+

Friday, 21 June 2024 17:30 (2 hours)

In the study of reactor and geo antineutrinos, tagging of the inverse beta decay (IBD) positron-neutron coincidence signature allows for the elimination of most backgrounds. In many detectors, the primary remaining background is caused by α captures on 13C —so called (α , n) events —which release a neutron and closely mimic the IBD's signature. The most common (α , n) prompt event is produced by protons recoiling from the neutron, which gives rise to a distinct pulse shape compared to that of the positron from an IBD. A powerful classifier is thus presented, able to purify the IBD signal from most of its (α , n) background, by discriminating between these pulse shapes. Particular attention is paid to the construction of appropriate training data from Monte-Carlo simulations. The tuning of the β and proton scintillation timing models in these simulations for SNO+ is also discussed. Tuning of the former is achieved via the selection of a high purity sample of in-situ ²¹⁴Bi to ²¹⁴Po decays. The latter makes use of the deployment of a radioactive Americium-Beryllium source. Finally, results of this classification

Institutional email

jp643@sussex.ac.uk

Poster prize

Yes

Given name

James

Surname

Page

First affiliation

University of Sussex

Second affiliation

Gender

Male

Collaboration (if any)

SNO+

Primary authors: PAGE, James (University of Sussex); LEBANOWSKI, Logan (University of California, Berkeley); Dr ANDRINGA, Sofia (Laboratório de Instrumentação e Física Experimental de Partículas (LIP))

Presenter: PAGE, James (University of Sussex)

Session Classification: Poster session and reception 2

Track Classification: Reactor neutrinos