Contribution ID: 410

Type: Poster

New results from CONNIE with Skipper-CCDs at the Angra-2 reactor

Friday, 21 June 2024 17:30 (2 hours)

The goal of CONNIE (COherent Neutrino-Nucleus Interaction Experiment) is to detect reactor antineutrinos via the CE ν NS (Coherent Elastic Neutrino Nucleus Scattering) channel using fully depleted high-resistivity CCDs (charge coupled devices) installed at about 30 meters from the core of the 3.8 GW Angra-2 nuclear reactor in Rio de Janeiro, Brazil. In 2021, The detector was upgraded with two Skipper-CCDs, becoming the first to deploy these type of sensors at a reactor, and lowering the detection threshold to a record 15 eV. We report new results from 300 days of data from 2021-2022, with an exposure of 18.4 g-days, including 95% C.L. limits on the CEvNS rate with Skipper-CCDs. Additionally, we present three BSM searches to illustrate the potential of Skipper-CCDs, namely: a limit on new neutrino interactions in simplified models with light vector mediators, a dark matter search by diurnal modulation yielding limits on DM-electron scattering, and a search for millicharged particles produced by reactors. We will discuss our current plans and ongoing efforts to increasing the detector mass.

Poster prize

No

Second affiliation

Collaboration (if any)

CONNIE Collaboration

Given name

Irina

Surname

Nasteva

First affiliation

UFRJ Brasil

Institutional email

irina.nasteva@cern.ch

Gender

Female

Primary author: IRINA, Nasteva (UFRJ Brasil)

Presenter: IRINA, Nasteva (UFRJ Brasil)

Session Classification: Poster session and reception 2

Track Classification: Reactor neutrinos