June 16-22, 2024, Milan, Italy

ID#335

IEUTRIN

XXXI International Conference on Neutrino Physics and Astrophysics

Reactor IBD Selection and Background in JUNO

Fei Xiao on behalf of the JUNO Collaboration Institute of High Energy Physics, CAS, Beijing, China

xiaofei@ihep.ac.cn

Neutrino Oscillation

Mixing matrix (PMNS):

$\left(\nu_{\rm e}\right)$		(V_{e1})	V_{e2}	$\mathbf{V_{e3}}$	(ν_1)
$ u_{\mu} $	=	$\mathbf{V}_{\mu1}$	$\mathbf{V}_{\mu2}$	$\mathbf{V}_{\mu3}$	ν_2
$\left(\nu_{\tau}\right)$		$\mathbf{V}_{\tau 1}$	$\mathbf{V}_{ au 2}$	$\mathbf{V}_{\tau 3}$	$\left(\nu_{3}\right)$

At	Atmospheric		reactor & CP phase			Solar		Majorana phase				
$\mathbf{V} = egin{pmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix}$	0 c ₂₃ -s ₂₃	0 S ₂₃ C ₂₃	$\left(\begin{array}{c} \mathbf{c_{13}}\\ 0\\ -\mathbf{s_{13}}\end{array}\right)$	$egin{array}{c} 0 \ {f e}^{-{f i}\delta} \ 0 \ 0 \end{array}$	$\begin{pmatrix} \mathbf{s_{13}} \\ 0 \\ \mathbf{c_{13}} \end{pmatrix}$	$\begin{pmatrix} \mathbf{c_{12}} \\ -\mathbf{s_{12}} \\ 0 \end{pmatrix}$	s ₁₂ c ₁₂ 0	0 0 1	$egin{pmatrix} {f e}^{{f i} ho} \ 0 \ 0 \ 0 \ \end{bmatrix}$	$egin{array}{c} 0 \ { m e}^{{ m i}\sigma} \ 0 \ \end{array}$	0 0 1	

JUNO Introduction

 \Box To determine the **neutrino mass ordering** (sign of Δm_{32}^2) independently of the CP phase δ and the θ_{23} octant

To measure neutrino oscillation parameters to sub-percent precision

Core 2	2.9	52.82	5.8
Core 3	2.9	52.41	5.9
Core 4	2.9	52.49	5.9
Core 5	2.9	52.11	6.0
Core 6	2.9	52.19	5.9
Daya Bay	17.4	215	3.65
Total IBD rate			57.4

Expected full IBD rate: 57.4/day

- 0.6 s, 0.4 s and 0.1 s on candidates with vertices less than 1 m, 2 m and 4 m away from muon tracks
- 1.2 s on candidates with vertices less than 3 m away from spallation neutrons

1ms veto for any muon in water pool or central detector

• 0.5 s veto on full central detector when \geq 3 muons going through detector simultaneously

After IBD selection criteria

Energy Range	99.8	-
Time Correlation (ΔT_{p-d})	99.0	-
Spatial Correlation (ΔR_{p-d})	99.2	-
Muon Veto (Temporal \oplus Spatial)	91.6	47.1
Combined Selection	82.2	47.1

IBD rate after selection : 47.1/day

Expected Backgrounds

Seven categories of backgrounds

(1) Geoneutrinos: \overline{v}_{ρ} from U/Th decay chains in earth matter

- World reactors: \overline{v}_{e} from reactors >300km away from JUNO detector
- **Accidentals**: two uncorrelated events that accidentally mimic IBD signal
 - prompt-signal: radiogenic events
 - delayed-signal: radiogenic events and spallation neutrons

⁹Li/⁸He: β -n correlated decays mimicking IBD signal, produced by muons

- strong time and space correlation with parent muon
- can be effectively suppressed by muon veto strategy

Residual background

	Backgrounds	Rate $[day^{-1}]$	B/S [%]	Rate Unc. [%]	Shape Unc. [%]
	Geoneutrinos	1.2	2.5	30	5
	World reactors	1.0	2.1	2	5
	Accidentals	0.8	1.7	1	negligible
	$^{9}\mathrm{Li}/^{8}\mathrm{He}$	0.8	1.7	20	10
	Atmospheric neutrinos	0.16	0.34	50	50
	Fast neutrons	0.1	0.21	100	20
	$^{13}C(\alpha,n)^{16}O$	0.05	0.01	50	50
(Total backgrounds	4.11	8.7		

Atmospheric neutrinos: producing neutrons, protons, α and excited nuclei

- mainly from neutral-current (NC) interactions, especially quasi-elastic scattering (QE) and two-particle two-hole interaction (2p2h) between v_{atm} and ¹²C dominant
- **Fast neutrons**: neutrons produced by muons going through peripheral materials $(\mathbf{6})$ of detector
 - prompt-signal: neutron scatter off protons
 - delayed-signal: neutron capture
 - can be rejected mostly if parent muon tagged by muon veto system

(7) ¹³C (α , n)¹⁶O: α from natural radioactivity

- prompt-signal: ¹⁶ O deexcitation
- delayed-signal: neutron capture

Backgrounds will be measured with data once JUNO begin data collection, and we are exploring avenues to optimize the selection using machine learning methods

Visible energy spectrum expected in JUNO with (grey) and without (black) backgrounds

Reference

[1] JUNO Collaboration; *J.Phys.G* 43 (2016) 3, 030401 [2] JUNO Collaboration; arXiv:2405.18008v1 [3] JUNO Collaboration; PoS EPS-HEP2019 (2020) 398 [4] JUNO Collaboration; Chin. Phys. C 45, 023004 123001-21(2021) [5] JUNO Collaboration; Prog.Part.Nucl.Phys. 123 (2022) 103927 [6] Jie Cheng et al.; arXiv:2404.07429