

Calibration Strategy of JUNO

Junting Huang for the JUNO Collaboration School of Physics and Astronomy, Shanghai Jiao Tong University junting@sjtu.edu.cn

JUNO Experiment

- □ Jiangmen Underground Neutrino Experiment (JUNO)
 - ✓ neutrino mass ordering measurement
 - ✓ precision measurement of $|\Delta m_{31}^2|$, Δm_{21}^2 and θ_{12}
- □ calibration goal: for uniformly distributed e+ events
 - ✓ better than 1% energy calibration precision
 ✓ better than 3% energy resolution at 1 MeV
- Detter than 3/2 energy resolution at Timev
 17612 20-inch PMTs, 25600 3-inch PMTs, 78 % photocathode coverage

20-inch PMT Calibration

- dark noise, time alignment, gain calibration
- □ first hit time vs. charge
- $\hfill\square$ relative photon detection efficiency
- 20-inch PMT non-linearity: electronics, waveform reconstruction
 use 266 nm laser to inject light on a Teflon ball at detector center
 - ✓ 3-inch PMTs working in digital mode: fired or non-fired
 - $\checkmark\,$ Poisson-zero method: use the number of non-fired 3-inch PMTs to calibrate laser intensity

Liquid Scintillator Non-Linearity Calibration

Iiquid scintillator non-linearity: Birks' law, Cherenkov light

- gamma calibration sources at different energies
 - treat a gamma event as a collection of e- and e+ using Geant4
 - ✓ build a non-linearity model for e-/e+, fit to calibration data
 - ✓ predict the non-linearity for e+
- constraint from continuous spectra from cosmogenic B12 and C11

Calibration System

- Automatic Calibration Unit
- Cable Loop System
- Guide Tube Calibration System
- Remotely Operated Vehicle

source	type	energy
¹³⁷ Cs	γ	0.662 MeV
54Mn	γ	0.835 MeV
⁶⁰ Co	γ	1.173 + 1.333 MeV
4° K	γ	1.461 MeV
⁶⁸ Ge	γ	0.511 + 0.511 MeV
²⁴¹ Am-Be	n, γ	n + 4.43 MeV (12C*)
²⁴¹ Am- ¹³ C	n, γ	n + 6.13 MeV (16O*)
(<i>n</i> , γ) <i>p</i>	γ	2.22 MeV
$(n,\gamma)^{12}$ C	γ	4.94 MeV
		or 3.68 + 1.26 MeV

+ low energy sources: ²²⁶Rn, ²⁴¹Am, etc.

Non-Uniformity Calibration

- detector non-uniformity: PMT acceptance, light attenuation, total internal reflection at the acrylic-water interface
- calibration sources deployed by the calibration system at different positions in the detector
- cosmogenic neutrons, about 1 M / week
- develop reconstruction algorithms that use these calibration data as input to largely remove the detector non-uniformity

Positron Energy Resolution Calibration

use the e+/e- nonlinearity model to predict resolution curve for e+
 further parametrize the resolution curve with

$$\sigma/E = \sqrt{a^2/E + b^2 + c^2/E^2}$$

 contributing factors: a: Poisson, b: non-uniformity and Cherenkov, c: mainly dark current and e+ annihilation

References: JHEP 03 (2021) 004, F. Zhang PhD thesis (2021), Chin.Phys.C 46 (2022) 12, 123001, arXiv:2405.18008