Online Scintillator Internal Radioactivity Investigation System

OSIR R IS

Arshak Jafar & Oliver Pilarczyk on behalf of the JUNO OSIRIS subgroup

Johannes Gutenberg-University Mainz

Overview

The OSIRIS detector is a subsystem of the liquid scintillator filling chain of the JUNO neutrino experiment. Its purpose is

- To validate the radiopurity of the scintillator
- To assure that all components of the JUNO scintillator system work to specifications and

Mechanical Design

Water Tank, bolted carbon steel, inside covered with HDPE liner, works as a muon veto detector and providing shielding against external gammarays

Steel frame providing mounting points for photodetectors, calibration system and optical separation between inner and outer detector

Photon Detection

Light will be detected by 20-inch PMTs arranged in two optically separated subdetectors:

- Inner array (64 PMTs) looking toward **Acrylic Vessel**
- Outer array (12 PMTs) acting as muon veto detector

• To verify that only neutrino-grade scintillator is filled into the JUNO Central Detector.

The aspired sensitivity level of 10^{-16} g/g of 238 U and 232 Th requires a large ($\sim 20 \text{ m}^3$) detection volume and ultralow background levels.

OSIRIS's is placed at the end of the purification line of the liquid scintillator.

Acrylic Vessel holding the ~20 ton scintillator sample

Top and bottom cleanrooms provide clean environment for detector instrumentation

Electronics cabinet with air conditioning holds the electronics and computing hardware

- PMTs are Multichannel plate (MCP) based
- Mean photo detection efficienty of 28.9%
- Mean time resolution ~ 8,4 ns
- JUNO readout electronics with 3 PMTs connecting to 1 underwater Global Control Unit (GCU) (see No. 9)

Inside view of OSIRIS shortly before closing the detector to the outside.

Liquid Handling System

LHS provides two operation modes: batch and novel continuous flow mode.

8

In continuous mode LS is heated before insertion to establish temperature gradient. To maintain continuous filling:

- **Diffusers** redirect inflowing LS into a horizontal direction
- Temperature profile monitoring with ThermoRod
- **Temperature control** of outside water

9

Currently OSIRIS is operated in **Batch mode**. Unitl JUNO filling batch mode is the main operation mode of OSIRIS to get first data and understand the detector properties as well as a quality check for the purification chain.

During JUNO filling OSIRIS will be operated in **continuous** mode to monitor the liquid scintillator that goes into JUNO during the filling process to ensure the LS meets the radiopurity requirements needed for JUNO to be successful.

Data Acquisition : EventBuilder

Left to right: Scheme of data flow and processing in EventBuilder

	GCUs:	Reader:	Hit Constructor:	Sorter & Merger:
	 Connects to 3 PMTs each Connects to hardware trigger module & DAQ Houses ADC with 1GS/s and HV module 	 Initializes connections Loops over HW and receives data in blocks Channel-by-channel buffering of data 	 Process data from Reader buffers Finds header and trailer to construct waveform Checks data validity 	 Uses std::multiset Time sorts the waveforms Merges outputs from different sorter buffers into one buffer
I	 Selector: Finds trigger Assigns trigger type Constructs hits close in time to Events 	 Sender & Writer: Writes to disk in binary format Sends events to online analysis PC over network 	EventBuilder EventBuilder is the DAQ software used in OSIRIS and uses a multithreaded, hit-by-hit processing of digitized data from the PMTs. With the current hardware, EventBuilder is capable of processing trigger rates of up to 6 kHz per PMT.	

