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 Coherent elastic neutrino-nucleus scattering

● predicted by Standard Model
● very low energy (in keV range) of recoil 
nucleus
● first observed in 2017 by COHERENT

D.Z. Freedman, Phys. Rev. D 9 (1974) 1389
Kopeliovich V B, Frankfurt L L JETP Lett. 19 145 (1974); Pis'ma Zh. Eksp. Teor. Fiz. 19 236 (1974)
D.Akimov, J. Albert, P. An et.al., Science. — 2017.
First ground-level laboratory test of the two-phase xenon emission detector RED-100, Akimov D. et.al., JINST 2020

RED-100 detector
● designed in order to study coherent elastic scattering of 
reactor electron antineutrinos off xenon atomic nuclei
● two-phase emission detector 
● contains ∼200 kg of LXe (∼ 100 kg in FV) or ∼100 kg of LAr 
(∼50 kg in FV)

● 26 Hamamatsu 
R11410-20 PMTs (19 in 
the top array, 7 in the  
bottom array)
● Thermosyphon-based 
cooling system (LN2)

● Sensitive to the single ionization electron (SE) signal. CEvNS  
response is expected to be of several electrons.

RED-100 at Kalinin NPP

1: LN2 tank, 2: support frame, 3: water 
tank, 4: Cu shielding, 5: RED-100

● 19 meters from the reactor core
● reactor and reactor building&infrastructure as a passive 
shielding from muons
● water tank as a passive shielding from neutrons
● 5 cm of copper passive shielding from gamma sources
● Antineutrino flux at place ∼ 1.35*1013 cm-2s-1

● 65 m.w.e. in vertical direction
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WWER-1000 reactor:
— thermal power ~3GW

●  2020: RED-100 
was shipped to KNPP
●  2021: Deployed 
and tested
●  2022: (Jan-Feb) 
Physical run
●  reactor OFF and 
reactor ON periods

Akimov D. Y., et al. JINST 17.11 (2022), T11011

Background conditions at KNPP

● background was measured with RED-100 itself and with different additional detectors
● no significant correlation in external background count rate with reactor operation

Calibration and characterization of the detector

Reactor antineutrino spectrum

Data in ROI (ON and OFF)

RED-100/LAr

Signal simulation

lifetime evolution 

● LED calibration (for the SPE parametrization)
● SE calibration (with zero hardware threshold)
● calibration with the cosmic muons (for the electron 
lifetime measurement)
● calibration with gamma-sources (137Cs and 60Co) 
(for the light response functions (LRFs) reconstruction and 
electron extraction efficiency calculation)

D.Y. Akimov et al 2023 JINST 18 P12002
https://arxiv.org/abs/2403.12645
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neutron background

nuclear recoil spectra

● charge yield was calculated using NEST 2.1.4
● there is a significant dependence on charge yield dispersion 
model
● The Poisson dispersion is based on assumption that SE are 
results of counting experiment
● The NEST dispersion is based on first principles (mechanism 
of total quanta distribution to scintillation and ionization 
channels with correction to non-binomal component)

V.I. Kopeikin, L.A. Mikaelyan, and V.V. Sinev,Reactor as a Source of Antineutrinos: Thermal Fission Energy, Physics of Atomic Nuclei, 1892 (2004)
Szydagis et al., Noble Element Simulation Technique (v2.3.6) // Zenodo. —2022.

● contribution of the high energy tail is significant in 
our ROI (>4 extracted ionization electrons)
● the partial shares of the main fissile isotopes of 
nuclear fuel were considered unchanged throughout 
the data taken period
● the average energy per fission is ~205.3 MeV

● Trigger:
— counts SPEs in individual channels in 2µs time 
window with vetos after muons and gammas 
— veto high SPE rate
— has livetime ~60%
● Cuts:
— on the number of random SPE on the wf
— on the energy (>4.5 visible ionization electrons)
— on the reconstructed radius (140 mm)
— on the duration (cut depends on energy)
— pointlike cut by two neural networks
Unexpectable pointlike high energy background!

● combined histogram (reconstructed 
energy+radius+duration)
● Azimov dataset for sensitivity calculation
● ON-OFF residual for CEvNS limit calculation

NEST fluctuations: 
sensitivity ~131 and upper limit ~172 
Poisson fluctuations: 
sensitivity ~43 and upper limit ~70 
(times larger than SM prediction)

Significant dependence on the fluctuations model!

● every signal consists of 
several SE signals
● SE signals were simulated 
using measured SE 
parameters and reconstructed 
LRFs

Sensitivity&CEvNS upper limit

● higher nuclear recoils energies → more electrons per 
CEvNS event
● ~100% electron extraction
Engineering tests are ongoing

— PMTs were coated with TPB
— the cooling system was upgraded
— the extraction field was raised up to 5kV/cm
● LY and SE study is ongoing

LXe summary

●the possibility of the detector operation with 
stable parameters at NPP was demonstrated 
for the first time for this detector type
●threshold 4.5 SE
●the sensitivity to single ionization electrons 
was shown (SEG = 27.4±0.03 SPE/SE)
●advanced data analysis methods were 
applied
●~190 times background suppression in ROI 
(~16 times signal suppression) (NEST 
fluctuations)
● unexpectable pointlike background in ROI
● significant result dependence on the 
fluctuation model
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100 days reactor OFF livetime requires 
at least 10 years detector exposition at 
the KNPP

with optimistic Poisson fluctuations:
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