

Ultra-sensitive analysis of U, Th and K in the liquid scintillator of the JUNO experiment

on behalf of the JUNO collaboration

University and INFN of Milano-Bicocca, Milano (Italy)

* speakers

PMT

β

HPGe

LS

The JUNO experiment

• Main JUNO physics goals :

- 3σ measurement of the neutrino mass ordering with reactor antineutrinos in ~6 years
- Measuring oscillation parameter with a precision < 0.5 % ($sin^2\theta_{12}, \Delta m_{21}^2, \Delta m_{31}^2$)
- Reactor \overline{v} detected by Inverse Beta Decay on free protons
- Large scintillator detector (20 ktons)
- Largest PMT coverage ever built (78%) with < 3% energy resolution at 1 MeV
- Broad physics program: mass ordering, precision measurement of oscillation parameters, solar and supernova neutrinos, atmospheric neutrinos,

JUNO background

 $\overline{v}_e + p \rightarrow e^+ + n$

Inverse Beta Decay (IBD):

- Prompt signal from positron ionization and annihilation
- Delayed signal from neutron capture on ¹H (2.2 MeV γ)

Criteria for IBD identification:

- Prompt signal: 0.7 < Ep < 12 MeV
- Delayed signal: 1.9 < Ed < 2.5 MeV
- Time coincidence < 1 ms
- Prompt-delay signal vertexes distance < 1.5 m

Single trigger count rate from natural radioactivity in materials must be below 10 Hz in the liquid scintillator fiducial volume (R < 17.2 m).

Careful material selection, surface cleanliness, radon emanation and dust control are mandatory.

Main background sources for IBDs

- Natural radioactivity
- Cosmogenic nuclei (⁹Li/⁸He)
- Fast neutrons and (α, n) reactions
- Geo-neutrinos
- Cosmic muons

Angel Abusleme et al 2022 Chinese Phys. C 46 123001

geo-neutrinos, proton decay...

JUNO liquid scintillator production

The Liquid Scintillator (LS) is the most critical component for the radiopurity: minimum requirements: ²³⁸U and ²³²Th < 10⁻¹⁵ g/g and ⁴⁰K < 10⁻¹⁶ g/g

LS: Linear Alkyl Benzene (LAB) added with fluor (PPO) and wavelength shifter (bis-MSB). Custom purification plants are exploited for the JUNO liquid scintillator:

Gas stripping

PPO & bis-MSB mixing

Radiopurity monitoring at each step is crucial to reach the final requirements

$\beta - \gamma$ coincidence measurements

The detector is made of a liquid scintillator and a High Purity Germanium (HPGe) detectors 🛶 operating in time coincidence. The irradiated sample is mixed with fresh liquid scintillator.

This measurement system is able to detect well-defined time correlated events allowing a strong reduction of background

An Muon veto plastic scintillators Liquid scintillator **HPGe**

innovative triple delayed coincidence techniques has been developed for U measurements, exploiting a metastable nuclear level in ²³⁹Pu, decay product of ²³⁹Np.

Sensitivity and radiopurity results on JUNO LS during plant commissioning

High sensitivity techniques for ²³⁸U, ²³²Th and ⁴⁰K measurement in LS

Our approach for U and Th measurement combines neutron activation analysis (NAA), radiochemical treatments and high sensitivity measurements by a novel β - γ low background detector

For K we exploit the direct irradiation of the LS followed by gamma spectroscopy measurement of the irradiated sample, due to high contamination risk during pre-irradiation treatments

Radiochemical treatments

Treatments before irradiation

- Clean room to reduce the sample contamination risk
- Development of a dedicated cleaning protocol for tools
- Use PFA containers for extremely low contaminations
- Use reagents with the highest purity available ("ultra pure")
- 1. Liquid-liquid extraction: U and Th transfer from LS to an acid aqueous solution.
- 2. Extraction chromatography (UTEVA resin): U and Th separation from the other nuclides and to reduce the sample volume.

Treatments after irradiation

1. Extraction chromatography (TEVA resin) Np and Pa separation from interfering nuclides produced during the activation.

Interfering nuclides U/Th (Np/Pa)

Blank measurements and clean real sample allowed to evaluate the **sensitivity** of the developed technique

Copper

Limits to sensitivity:

Lead

- Uranium: residual uranium released by the resin in the pre-irradiation treatment, sample mass.
- Thorium: lower activation cross section and higher measurement background, sample mass.
- **Potassium**: sample mass and random contamination of the samples

Nuclide	Sensitivity @ 95 %
²³⁸ U	< 0,7 ppq @ 500 mL < 0,4 ppq @ 1 L
²³² Th	< 8 ppq @ 1 L < 1,9 ppq @ 1 L using central channel
⁴⁰ K	< 0,7 ppq @ 126 g

Results from samples took during the commissioning of the JUNO purification plants

Overall efficiency of the process: (86 ± 12) % for U and (43 ± 10) % for Th

Neutron activation analysis

The neutron activation process consists in the production of unstable isotopes through neutrons $^{232}_{90}Th + n \rightarrow ^{233}_{90}Th \rightarrow ^{233}_{91}Pa$ absorption by the nuclei of interest in the sample

 $^{238}_{92}U + n \rightarrow ^{239}_{92}U \rightarrow ^{239}_{93}Np$ $^{41}_{19}K + n \rightarrow ^{42}_{19}K$ **Calculation** of the

- Leachate

Sample and standard are exposed to a neutron flux

Extraction of the irradiated sample and **measurement** of \rightarrow induced γ radioactivity

quantity of precursor element

Irradiation channels:

- Rotating facility around the reactor core ($\phi \sim 10^{12} \text{ cm}^{-2} \text{s}^{-1}$) \rightarrow multiple samples
- Channel at the center of the reactor core $(\phi \sim 10^{13} \text{ cm}^{-2} \text{s}^{-1}) \rightarrow \text{two samples}$

Research reactor (250 kWth) - Pavia, Italy

• Different sample mass

- Different background condition
- Continuous improvement of the measurement techniques

Future plans and improvements

- The beginning of the JUNO detector filling with LS is currently foreseen at the end of the 2024 • Before and during the filling phase new measurement campaigns will be performed to monitor the radiopurity of the liquid scintillator
- Th and K sensitivity improvements by exploiting the reactor central channel • Post-irradiation radiochemical treatment is under study to improve the K sensitivity

Neutrino 2024 XXXI International Conference on Neutrino Physics and Astrophysics June 16-22, 2024, Milan, Italy

Contact information: andrea.barresi@unimib.it massimiliano.nastasi@unimib.it

TRIGA Mark II

___ Eluate