

The Mobile Antineutrino Demonstrator Project Goal: Develop & construct a readily mobile aboveground ton-scale antineutrino detector system to advance neutrino applications

Nathaniel Bowden, Lawrence Livermore National Laboratory on behalf of the Mobile Antineutrino Demonstrator Project

Introduction

- The Mobile Antineutrino Demonstrator will:
- require no infrastructure beyond power & deployment footprint
- operate aboveground without significant shielding
- incorporate potential end-user input
- advance "Technical Readiness" of neutrino applications by performing capability demonstrations in operationally relevant environments Timeline:
- 2022-2023: Detector concept R&D, potential host and end-user engagement \bullet

Engagement with Potential End-Users, Reactor Sites, & Other Mobile Projects

Important Utility and Logistical Topics:

- Reliability
- Demonstration fidelity
- Security inspection for PA access
- Fire Suppression
- **Environmental Control**
- Safety & Mechanical Assessment

2023-2024: Technology selection, system design, construction & commissioning

Advancing Two Solid-State Detection Technologies

2D segmentation using ⁶Li-doped PSD plastic scintillator •Novel material •IBD analysis based on PROSPECT

3D segmentation using ⁶LiZnS & WLS plastic (CHANDLER) •Mature COTS materials

•Novel 3D reco & topological analysis

Physical Site & System Access \bullet

Mobile Enclosure

- compliance with host requirements for safety, security, and inspections
- environmental control, power \bullet distribution, and connectivity
- modest detector shielding
- safe detector transport \bullet

R&D Phase established two concepts with good performance

Predicted sensitivity comparable for systems within project budget envelope

	Concept	x	y	z	Volume	Elements	PMTs	"Eff. Counts"	
10000000000	2D	14 bars	14 bars	-	0.71 m ³	196	392	130 day ⁻¹	
		84.0 cm	84.0 cm	100 cm					
	3D	16 cubes	16 cubes	41 ¹ / ₂ -cubes	1.01 m ³	10,496	1,344	131 day^{-1}	
24242525555555555		92.8 cm	92.8 cm	116.9 cm					

Residual technical risks for both concepts most effectively resolved through build out at larger scale

arxiv:2405.19573

https://doi.org/10.1103/PhysRevApplied.13.034028

2D Concept R&D Focus: Large-scale EJ-299-50 ⁶Li-doped PSD Plastic (See Poster 471)

- Light output (~65% of EJ-200), PSD, meter-scale attenuation length
- No significant performance degradation over 6-12 month time-scales
- Mechanical properties suitable for ton-scale detector construction
- Some precipitation of primary dye observed; address via packaging

3D Concept R&D Focus:

3D Reconstruction & Topological Event Selection

- 3D reco uses light profiles measured using vertical muons
- Best-fit hit pattern found via superposition of measured responses and minimization of weighting factors
- Multiple observables for identifying IBD events developed using topology, energy, and pulse shape

Neither relative performance nor technical considerations provided a strong preference for either concept

MAD will be equipped with two detector subsystems

Concept	x	y	z	Volume	PMTs
2D	8 bars	8 bars	-	0.23 m ³	128
	48.0 cm	48.0 cm	100 cm		
3D	16 cubes	16 cubes	25 ¹ / ₂ -cubes	0.61 m ³	832
	92.8 cm	92.8 cm	73 cm		

Example Performance Prediction

During an aboveground deployment 25m from a 3GW reactor, On-Off observation expected within hours even if backgrounds higher than predicted

• Classification and Regression Trees (CART) algorithm used to explore event selection in complex multivariate space

Predicted 3D subsystem signal/background

Both subsystems will be able to reactor antineutrino detection capability demonstrations and advance the technology concepts

PARTICIAPTING INSTITUTIONS

LLNL-POST-865244 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.