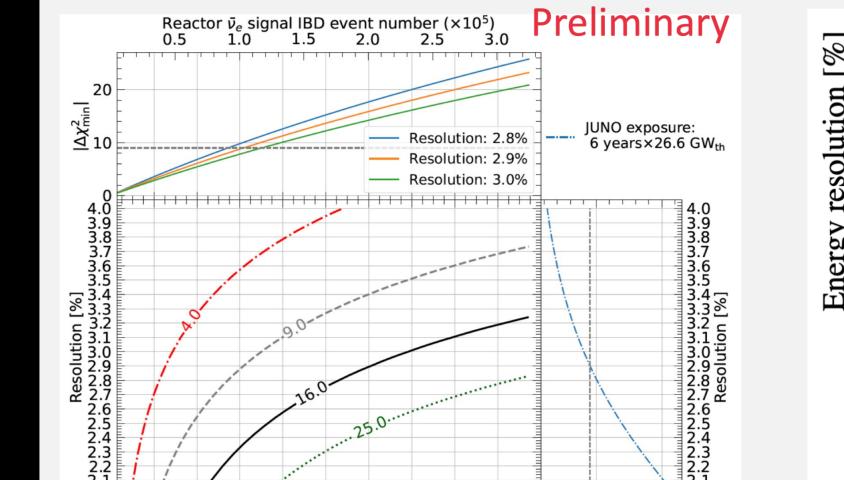
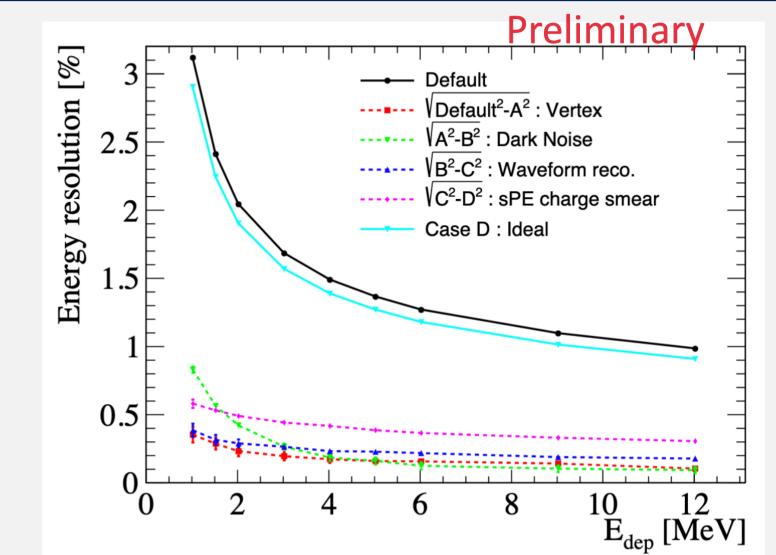

Machine Learning based photon counting for PMT waveforms and its application to the energy reconstruction in JUNO

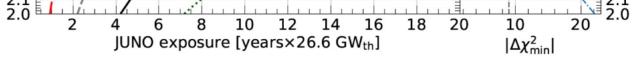
## ID: 201

Wuming Luo (Institute of High Energy Physics) On behalf of JUNO


## **JUNO Experiment**


### ~650m overburden

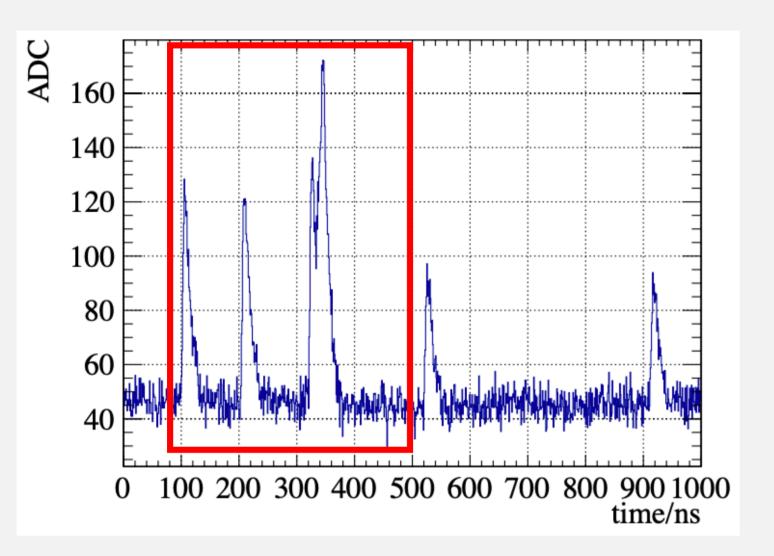



43.5 m

- World's largest liquidscintillator detector
- Central Detector: 20kton LS, 17'612 20" PMTs and 25'600 3" PMTs
- Unprecedented energy resolution 3%@1MeV






Main physics goal: determination of neutrino mass ordering (NMO)



Energy resolution is crucial for NMO sensitivity in JUNO
 PMT charge smearing is one of the dominant factors

**Energy Resolution** 

## ML based Photon Counting



- Input: pre-processed PMT waveform within 420ns signal window
- *Model*: Customized RawNet
  *Output*: {p<sub>k</sub>} the probability for predicting (k=0,1, ... ≥9) PEs

Table 2: Modified RawNet architecture. For convolutional layers, numbers inside parentheses refer to filter length, stride size, and number of filters. For gated recurrent unit (GRU) and fully-connected layers, numbers inside the parentheses indicate the number of nodes.

| Layer     | Output shape       |            |  |
|-----------|--------------------|------------|--|
| Stridad   | Conv(3,3,128)      |            |  |
| Strided   | BN                 | (128, 140) |  |
| -conv     | LeakyReLU          |            |  |
|           | (Conv(3,1,128))    |            |  |
|           | BN                 |            |  |
|           | LeakyReLU          |            |  |
| Res block | Conv(3,1,128) > x2 | (128, 46)  |  |
|           | BN                 |            |  |
|           |                    |            |  |
|           | (MaxPool(3))       |            |  |
|           | (Conv(3,1,256))    |            |  |
|           | BN                 |            |  |
|           | LeakyReLU          |            |  |
| Res block | Conv(3,1,256) > x2 | (256, 1)   |  |
|           | BN                 |            |  |
|           | LeakyReLU          |            |  |
|           | (MaxPool(3))       |            |  |
| GRU       | GRU(1024)          | (1024,)    |  |
| Speaker   | FC(128)            | (128)      |  |

# Photon Counting Performance

| Work in progress                        |      |      |      |      |      |      |      |      |      |      |      |
|-----------------------------------------|------|------|------|------|------|------|------|------|------|------|------|
|                                         | 0 -  | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|                                         | 1 -  | 0.01 | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|                                         | 2 -  | 0.00 | 0.03 | 0.95 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
|                                         | 3 -  | 0.00 | 0.00 | 0.07 | 0.87 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| True label                              | 4 -  | 0.00 | 0.00 | 0.00 | 0.13 | 0.77 | 0.09 | 0.01 | 0.00 | 0.00 | 0.00 |
| True                                    | 5 -  | 0.00 | 0.00 | 0.00 | 0.01 | 0.18 | 0.66 | 0.13 | 0.01 | 0.00 | 0.00 |
|                                         | 6 -  | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.22 | 0.57 | 0.16 | 0.02 | 0.00 |
|                                         | 7 -  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.25 | 0.50 | 0.20 | 0.01 |
|                                         | 8 -  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.05 | 0.27 | 0.58 | 0.09 |
| 1                                       | ≥9 - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.21 | 0.76 |
| 0 1 2 3 4 5 6 7 8 ≥9<br>Predicted label |      |      |      |      |      |      |      |      |      |      |      |

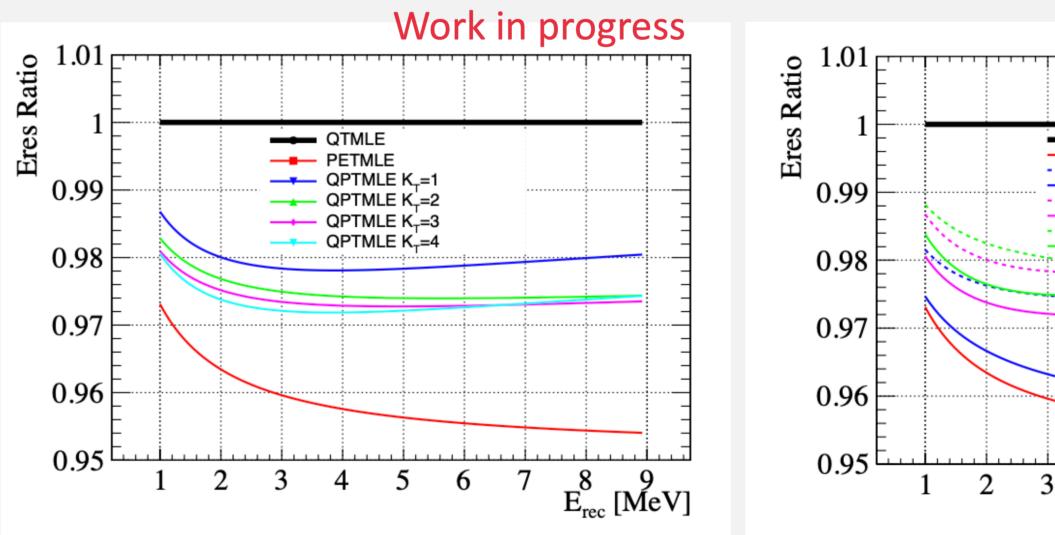
#### Work in progress

| 0 -               | 0.00 | 0.00 | 0.00 | 0.00 | 0.00          | 0.00          | 0.00 | 0.00 | 0.00 | 0.00 |
|-------------------|------|------|------|------|---------------|---------------|------|------|------|------|
| 1 -               | 0.06 | 0.82 | 0.09 | 0.01 | 0.00          | 0.00          | 0.00 | 0.00 | 0.00 | 0.00 |
| 2 -               | 0.00 | 0.12 | 0.65 | 0.17 | 0.03          | 0.01          | 0.01 | 0.00 | 0.00 | 0.00 |
| 3 -               | 0.00 | 0.00 | 0.15 | 0.54 | 0.22          | 0.04          | 0.02 | 0.01 | 0.01 | 0.01 |
| abel<br>4         | 0.00 | 0.00 | 0.01 | 0.17 | 0.47          | 0.24          | 0.06 | 0.02 | 0.01 | 0.02 |
| True label<br>G 5 | 0.00 | 0.00 | 0.00 | 0.01 | 0.17          | 0.41          | 0.25 | 0.08 | 0.03 | 0.05 |
| 6 -               | 0.00 | 0.00 | 0.00 | 0.00 | 0.02          | 0.17          | 0.37 | 0.25 | 0.09 | 0.10 |
| 7 -               | 0.00 | 0.00 | 0.00 | 0.00 | 0.00          | 0.03          | 0.17 | 0.34 | 0.25 | 0.22 |
| 8 -               | 0.00 | 0.00 | 0.00 | 0.00 | 0.00          | 0.00          | 0.03 | 0.16 | 0.31 | 0.50 |
| 9 -               | 0.00 | 0.00 | 0.00 | 0.00 | 0.00          | 0.00          | 0.00 | 0.03 | 0.15 | 0.81 |
|                   | Ó    | i    | 2    | 3    | 4<br>Predicte | 5<br>ed label | 6    | 7    | 8    | ≥9   |

### Left: Confusion matrix of RawNet

- > 99% (95%, 87%) accuracy for 1PE (2PEs, 3PEs)
- Accuracy decreases rapidly as nPEs increases
- Right: Confusion matrix based on charge classification
  The accuracy is markedly inferior to that of RawNet

| embedding | FC(128) | (120,) |
|-----------|---------|--------|
| Output    | FC(10)  | (10,)  |
|           |         |        |


### **Energy Reconstruction**

| Algo. Name                 | Observable                                          | Likelihood: $\kappa \leq K_T$                                                | Likelihood: $\kappa > K_T$                                            |  |  |
|----------------------------|-----------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|
| QTMLE<br>(reference)       | q (charge)                                          | $\mathcal{L}(q_i \mu_i) = \sum_{k=1}^{+\infty} P_{q_i}$                      | $Q(q_i k)P(k,\mu_i)$                                                  |  |  |
| PETMLE<br>(ideal)          | k (true PEs)                                        | $\mathcal{L}(k_i \mu_i) =$                                                   | $P(k_i,\mu_i)$                                                        |  |  |
| QPTMLE<br>(realistic)      | {p <sub>k</sub> }, q                                | $\mathcal{L}(\{p_k^i\} \mu_i) = \sum_{k=0}^9 R_{K_T k} p_k^i P(k,\mu_i),$    |                                                                       |  |  |
| QPETMLE<br>(100% accuracy) | k(p <sub>k</sub> =1), q                             | $\mathcal{L}(k_i \mu_i) = P(k_i,\mu_i)$                                      | $\mathcal{L}(q_i \mu_i) = \sum_{k=1}^{+\infty} P_Q(q_i k) P(k,\mu_i)$ |  |  |
| QCTMLE                     | $\kappa$ (p <sub><math>\kappa</math></sub> :max), q | $\mathcal{L}(\kappa_i \mu_i) = \sum_{k=0}^9 C_{k\kappa_i} \times P(k,\mu_i)$ |                                                                       |  |  |

where  $\mu_i$  is the expected nPEs for the i-th PMT,  $P(k, \mu_i)$  is just<sub>4</sub> the Poission probability of observing k p.e. given  $\mu_i$  and  $P_Q(q_i|k)$  is the charge pdf for k p.e.

$$R_{K_T k} = \sum_{\kappa=0}^{K_T} C_{k\kappa},$$
  
confusion matrix  $C_{kk'}$ 

# **Energy Resolution Performance**



June 21<sup>st</sup>, 2024

Neutrino2024 @ Milano

Work in progress

- > Using the photon counting information for PMTs with ( $\kappa \leq K_T$ ) PEs can improve the energy resolution
- The improvement becomes smaller as K<sub>T</sub> increases due to the dropping accuracy for high PEs
- > Additional checks were done to validate the results

### Summary

Energy resolution is crucial for the NMO sensitivity in JUNO, while PMT charge smear is one of the dominant factors
 A Machine Learning based photon counting method was developed for PMT waveforms, which can achieve high accuracy at low PEs
 Integration of the photon counting information in the energy reconstruction can partially mitigate the impact of PMT charge smearing, leading to 2% to 2.8% relative improvement on the energy resolution

### References

- GuiHong Huang et al, Data-driven simultaneous vertex and energy reconstruction for large liquid scintillator detectors, Nucl.Sci.Tech. 34 (2023) 6, 83
  JUNO Collaboration, Prediction of Energy Resolution in the JUNO Experiment, arXiv:2405.17860
- 3. Wei Jiang et al, Machine-Learning based photon counting for PMT waveforms and its application to the improvement of the energy resolution in large liquid scintillator detectors, arXiv:2405.18720

### luowm@ihep.ac.cn