Contribution ID: 461

Type: Poster

Machine learning based design optimization for the search of neutrinoless double-beta decay with LEGEND

Tuesday, 18 June 2024 17:30 (2 hours)

Cosmic muon interactions leading to the in-situ production of long-lived radioisotopes may introduce a significant background in the context of rare event searches conducted deep underground. Specifically, the delayed decay of $7^{7(m)}$ Ge emerges as the primary contributor from in-situ cosmogenic sources for the neutrinoless double-beta decay search with ⁷⁶Ge. The future LEGEND-1000 experiment, aiming for a ton-scale setup, necessitates a stringent requirement of a total background less than 10^{-5} cts/(keV \cdot kg \cdot yr). Neutron backgrounds are closely tied to factors such as laboratory depth, shielding material, and cryostat design. The incorporation of passive neutron moderators results in a reduced background contribution. In order to determine the most effective shield design, computationally intensive Geant4 Monte Carlo simulations need to be generated multiple times to probe the high-dimensional parameter spaces. Traditional Monte Carlo simulations, however, may prove time-consuming and challenging when addressing full optimization across numerous parameter spaces. This renders conventional methods, such as grid searches, computationally infeasible. Machine learning emerges as a valuable tool, not only for accelerating common modeling but also for minimizing the reliance on computationally expensive standard Monte Carlo methods. We outline a Multi-Fidelity Gaussian Process study, showcasing its application in a small-scale context based on various neutron moderator configurations. The approach presented holds the potential for adaptability in exploring alternative detector shielding designs for ⁷⁶Ge experiments, such as LEGEND.

Poster prize

No

Given name

Ann-Kathrin

Surname

Schuetz

First affiliation

Lawrence Berkeley National Laboratory

Second affiliation

Institutional email

aschuetz@lbl.gov

Gender

Female

Collaboration (if any)

LEGEND Collaboration

Primary authors: SCHUETZ, Ann-Kathrin (Lawrence Berkeley National Laboratory); LI, Aobo (University of California San Diego)

Presenter: SCHUETZ, Ann-Kathrin (Lawrence Berkeley National Laboratory)

Session Classification: Poster session and reception 1

Track Classification: Neutrinoless Double Beta Decay