
• Gaussian Process: Bayesian method of prediction and uncertainty 
analysis combined with multi-level approach 

• Combine fast LF simulations with costly HF simulations sharing 
basic features 

• Multi-Fidelities (MF) ranked hierarchically by accuracy (t=0,…,T) 

             

• Adaptive sampling by maximizing acquisition function (trade off 
between exploration and exploitation)

ηt(x) = ρt−1 ηt−1(x) + δt(x)
discrepancy term 
modeled by GP

similarity to lower fidelity (GP)

Traditional Monte Carlo simulations, may prove time-consuming and challenging when addressing full optimization across numerous parameter spaces. This renders conventional methods, such as grid searches, 
computationally infeasible. Goal: Build an emulator and find optimal design parameters

Machine learning based design optimization for the search 
of neutrinoless double-beta decay with LEGEND

Location Depth 
[km.w.e]

77(m)Ge background contribution 
(w/o new cuts) [cts/(keVkgyr)]

SNOLab 
(Ref. Site) 6 (2.0 ± 0.5)·10-7 [5]

LNGS  
(Alt. Site) 3.5 2·10-5 [0]

Total background index goal of LEGEND-1000 is 10-5 cts/keV/kg/yr [5]. 
How large is the muon-induced background at LNGS? 
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Muon-induced background Neutron flux reduction

continuousdiscrete
• MC studies using a custom 

simulation module[3] to optimize 
the moderator screening effect 

• Based on LEGEND-1000 and 
GERDA setup[3] implementation

• Solid neutron moderator design [3],[6]: enclosing tube (with thickness 
d) or turbine-like structure (with n panels, thickness d, length L and 
angle 𝜃) at radius r (both designs can be described by the 5 
parameters)

Neutron Moderator Design Optimization with ML based Active Learning

Conditional Neural Process (CNP)[7] Surrogate Modeling via MF-GPGEANT4 Monte Carlo Simulation

Design [Radius, Thickness, N panels, Theta, Length]    →    Emulator    →   77Ge production rate
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Apply active learning to neutron moderator design optimization

no moderator enclosure turbine-like structure

mean neutron 
capture prob. of 
each moderator

neutrons, 
77Ge captures

Adding a passive shielding into the LAr with neutron absorber 
materials, such as e.g. polymethylmethacrylat (PMMA), the production 
rate of 77Ge depends on various material properties, e.g. neutron yield, 
cross-section, as well as the positioning of the absorber,…

• Active and passive cosmogenic background reduction is contingent 
upon LEGEND-1000 selecting a shallower host site 

• Various options for moderator designs are currently under active 
research and are being considered for implementation 

• A solid shield design has been identified which holds the potential of 
reducing the neutron background by a factor of 1.7

• Demonstrate a technique on a small-scale application, which can be 
adopted for more complicated tasks of exploring alternate designs of 
detectors 

• Approach can be used for many (shielding) simulation optimization 
tasks. There are many different multi-fidelity model approaches 
(hierarchically ranked, varying mesh size, staged,…) available

• Integration of additional output constraints such as material 
dependence, additional background contribution, and cost 
considerations. 

• Transfer Learning MF-GP model that makes informed decisions by 
incorporating expected improvements and considering the 
computational resources associated with each fidelity level

Future ImprovementsSummary Goal

• Signal (red) vs background 
(blue) Classification 

• Data augmentation used for 
imbalanced training data set  

• CNP effectively learns from 
neutron physics parameters 

• Separation between signal and 
background 

• For each moderator design, a 
mean neutron capture 
probability with an uncertainty 
estimate can be derived 

• Mean neutron capture 
probability over radius and 
number of panels is shown as 
1-dim projection 

• CNP learns underlying 
distribution

Training

• 300 LF samples, randomly 
sampled while adhering to 
parameter constraints 

• 4 initial HF samples 

• Count total number of 
neutron captures on 76Ge 

• 77Ge production rate over 
radius (t.l.) and number of 
panels (b.l.) shown as 1-
dim projection

GP posteriorGP prior

Sampling from 
GP prior after 

noise free 
observations

Two fidelity levels: 

• High fidelity (HF): cosmic muons are propagated through the setup 
including their secondaries (very costly) 

• Low fidelity (LF): neutrons inside the LAr cryostat are simulated, the 
neutron input parameters are drawn randomly from the HF simulation

Acquisition function

• Prompt interactions of shower constituents discriminated with >99% [0] 

• 77(m)Ge produced by neutron capture on 76Ge 
• Delayed decays of 77Ge and metastable 77mGe are dominant 

cosmogenic background [1,2]

Optimal design (b.r.) found 
with reduction by a factor of 
1.7 and a 77Ge production 
rate of 0.14 nuc/(kg·yr)

• Modeling of 5 dim space (r, t, 𝜃, n, L)  
with 3 fidelities (HF(MC), HF(CNP) and 
LF(CNP)) 

• Model evolution shown as projection on 
r, t, n, 𝜃 and L at a random point in space 

• Acquisition function: Integrated variance 
reduction with parameter constraints

[7]

[8]

HF(MC)

HF(CNP)

LF(CNP)

Run a few simulations at different parameters Train a predictive model using simulation data Predict simulation output at new parameters

• Learn Contextual Features


• Maximize the Posterior Likelihood to Train


• Uncertainty prediction


• Small dataset size (where avoiding overfitting important)

[2]

76Ge(n,𝛄)77(m)Ge 
40Ar(n,𝛄)41Ar

Neutron moderators can 
reduce the 77Ge production by 
slowing down the neutrons and 
increasing their likelihood to be 
captured on 40Ar instead of 
76Ge.

The Large Enriched Germanium Experiment for Neutrinoless ββ decay (LEGEND) searches for the neutrinoless double beta decay 
in the 76Ge isotope. The proposed LEGEND-1000 phase will consist of 1000 kg of enriched High Purity Ge detectors, designed to 
achieve a discovery sensitivity of 1028 yr going beyond the inverted-ordering neutrino mass region.


