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● WCTE is a unique opportunity to study water-Cherenkov detector response, novel technologies for optical 
detection, calibration and event reconstruction, and physics measurements to empower future neutrino 
experiments by minimising their systematic uncertainties

● The CERN
T9 beamline
provides WCTE
with charged
particles including 𝒆, 𝝁, 𝝅, 𝒑
at known momenta in the
100 MeV to 1.1 GeV range

● The charged particle configuration includes Aerogel
Cherenkov counters with different refractive indices chosen for
each beam momentum, for tagging of electrons and muons through
their Cherenkov threshold; Time of Flight (TOF) detectors with 100 ps
timing resolution provide identification of the heavier hadrons (𝑝, 𝜋, 𝐾, etc.)

● The tagged photon configuration includes a 1 Tesla permanent magnet to deflect 
positrons while bremsstrahlung photons continue towards the water-Cherenkov detector;
A hodoscope measures the deflected positron’s energy to determine the photon’s energy

● July 2023 beam test successfully demonstrated capability of both beam monitor configurations
● Data taking is scheduled for 6 weeks Oct-Nov 2024 with additional beamtime expected in 2025

Nick Prouse on behalf of the WCTE collaboration 
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Empowering the next generation of neutrino experiments through 
measurements at the Water Cherenkov Test Experiment

n.prouse@imperial.ac.uk

● 50 ton water-Cherenkov detector 
currently under construction

● 3.4 m height x 3.8 m diameter tank
● 100 multi-PMT modules each 

containing 19 individual 8cm PMTs
● Pure water phase and Gd-doped 

water phase for neutron detection
● Novel optical calibration systems 

and calibration source deployment
● Installation to T9 in October 2024

The Water Cherenkov Test Experiment (WCTE) at CERN T9 Beamline

● Neutral current 𝜈 interactions
producing single 𝛾 contribute
significant background to 𝝂𝒆 

● This cross-section has not been measured 
and has large theoretical uncertainty

● 𝜸 conversion to
𝒆+ + 𝒆- produces
overlapping
electron rings

● Single 𝒆 events
look identical to
existing event
reconstruction

● Promising 70% separation accuracy from 
novel machine learning reconstruction

● WCTE measurements of electrons and 
tagged photons enable development and 
validation on pure samples of 𝒆 & 𝜸 data
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machine 
learning Leptonic Scattering

● 𝝂 interaction cross-sections 
contribute significant uncertainty 
to neutrino measurements

● Lepton-nuclear interactions
provide information on 
neutrino-nuclear interaction
models through corresponding 
electroweak cross-sections

● WCTE can measure lepton 
scattering in water by
searching for two-ring events

Hadronic InteractionsCherenkov Emission Profile
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Discrepancies 
between models 
limit ability to use 
backward-going 
Cherenkov light to 
enhance event 
reconstruction
WCTE measures 
emission profile 
from 𝑒 and 𝜇 of 
known momenta

Interactions on Water
● Controlling 𝝂

cross-section 
uncertainties
essential for future
𝜈 measurements

● Nuclear interaction
of 𝜈 products also 
complicates 𝜈 energy 
reconstruction

● Pure control samples of WCTE
feed improvement and validation of interaction models

Detector Response

Broad physics programme of WCTE with 
focus on controlling major uncertainties 
of next generation neutrino experiments
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● WCTE leading development of 
new calibration & reconstruction

● Essential data-driven validation of 
machine-learning based methods

● WCTE directly 
measures 
response to 
reduce detector 
uncertainties

● e.g. measure
𝒆 / 𝝁 charge
ratio at fixed 
beam momenta

● Reduction to < 1% uncertainty is necessary 
for 𝜈 measurements at Hyper-Kamiokande

Event Reconstruction

● Charged current quasielastic 
neutrino interactions 
produce one proton, while 
antineutrino interactions 
produce one neutron 

● Tagging neutrons allows 
statistical 𝜈 / ͞𝜈 separation

● Large model uncertainties 
in final state interactions (FSI) 
and secondary interactions 
(SI) that modify observed 
neutron distribution

● Gadolinium doped water 
enables neutron detection 
via gammas after 𝑛-capture

● WCTE measures secondary 
neutron production from 
protons in water
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Neutron Multiplicities
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Machine learning performs where 
likelihood approximations fail

● Pion production in 𝝂 interactions introduces 
several challenges for 𝜈 measurements

● Complex hadronic interactions of pions 
cannot be simulated from first principles 
resulting in significant model uncertainties

● Multi-ring event topologies are difficult to 
reconstruct requiring development of new 
reconstruction methods to handle pion events

● WCTE directly measures pions, including 
all their interactions and detector response

● Potential to also measure pion photo-
production in tagged gamma configuration
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