A 3D field response simulation for

pixelated charge readout in LArTPC
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DUNE and ND-LAr 1

The Deep Underground Neutrino Experiment (DUNE) is a next-
generation long-baseline neutrino oscillation experiment with a
broad physics program centered on measuring Charge Parity
Violation in the neutrino sector.
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A critical component of the DUNE Near Detector (ND) is a Liguid
Argon Time Projection Chamber (LArTPC), called ND-LAr. [1]

Pixelated Charge Readout for LArTPC 2
With the expected high rate of neutrino interactions at the ND,
ND-LAr will consist of 7 x 5 LArTPC modules, each with a
pixelated readout based on custom ASIC called LArPix, which
provides native 3D readout to alleviate the pile-up issue.

M- ;ﬂ o Both sides of a 1000 cm2 LArPix tile

@u with 4900 pixels (left) and 100 ASICs
S (right).
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mm mmm, o Pixels are self-triggering with
gg;@i configurable charge thresholds of
SERRR  0(100) keV. [2]

In the cosmic-ray run, evidence
of LArPix retriggering has been
noticed.

This retriggering feature could
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Example of a pixel readout retriggered S _
by induced signal when an ionization Along the drift direction (z), hits of a
cloud reaches the anode. [4] smaller amplitude (purple) can be seen

preceding the track. [4]
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3D Field Response Simulation ~ c"jg@zgsoem 3

A new 3D field response simulation for ND-LAr
has been developed using Finite Element E

Method (FEM):
o Gmsh [5]: Mesh geometry into small elements - ogress
o Elmer [6]: Calculate Potential in a detector geometry
o Garfield++ [7]: Detailed simulation of signals in o
detectors Pixels (0V) @ zéo)c(:m
Induced current is I; =q*vg* VW,

calculated based o v, — Drift velocity that depends on electric potential
on Shockley-Ramo o W; — Weighting Potential by fixing readout pixel to
formalism: unit potential and other conductors to 0 V

Drifting an e- from z =30 cm above readout pixel
LArPix Single Chip Induced Signal Simulation
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Mitigation of Induced Signal Retriggering 4

One possible solution is to install a shielding plane upstream
of LArPix.

Example design of a LArPix shielding = [T (T |
plane !
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With a shielding plane, induced signal has

faster rising edge. Electron Transparency: drifting ~5000

electrons above anode; counting how
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Optimize shielding plane geometry and
bias voltage to enable full electron
transparency.

Charge can then be fully collected within
single trigger sample window (~2.5 us).
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