Contribution ID: 518 Type: Poster

Deployment of water-based liquid scintillator in **ANNIE**

Friday, 21 June 2024 17:30 (2 hours)

The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a neutrino detector at the Booster Neutrino Beam (BNB) at Fermilab. It is a gadolinium-doped water Cherenkov detector designed for measuring the neutron multiplicity in neutrino-nucleus interactions, as well as measuring the charged-current cross section of muon neutrinos. In addition, ANNIE has a strong focus on testing new detector technologies, amongst which is Water-based Liquid Scintillators (WbLS). It is a novel detection medium that allows the simultaneous detection of scintillation and Cherenkov light. To test the detection capabilities of WbLS, a 366 L cylindri-

detection of semismation and energines, using the test the detection supusmites of 1,1526, a 500 2 c/main
cal vessel filled with WbLS was deployed in ANNIE. The successful observation of both scintillation and
Cherenkov light in ANNIE corresponds to a proof-of-concept for the hybrid event detection concept. This
allows for the future development of dedicated algorithm for vertex reconstruction and particle identification
algorithms. Additionally, a number of dedicated analyses are planned in ANNIE, that will make use of both
the Cherenkov and scintillation component. This poster presents an overview of the WbLS activity in ANNIE

Poster prize

Yes

Given name

Noah

Surname

Goehlke

First affiliation

Johannes Gutenberg-University Mainz

Second affiliation

Institutional email

ngoehlke@uni-mainz.de

Gender

Male

Collaboration (if any)

Primary authors: AUGUSTHY, Amala (JGU Mainz); GOEHLKE, Noah (Johannes Gutenberg-University

Mainz)

Presenters: AUGUSTHY, Amala (JGU Mainz); GOEHLKE, Noah (Johannes Gutenberg-University Mainz)

Session Classification: Poster session and reception 2

Track Classification: New technologies for neutrino physics