

NEUTRINO 2024

<u>C. Landini^{1,*}, M. Beretta^{1,2}, on behalf of the JUNO Collaboration</u> ¹ INFN – Sezione di Milano, ² Università degli studi di Milano

Neutrino 2024, Milano (Italy), 16–22 June 2024

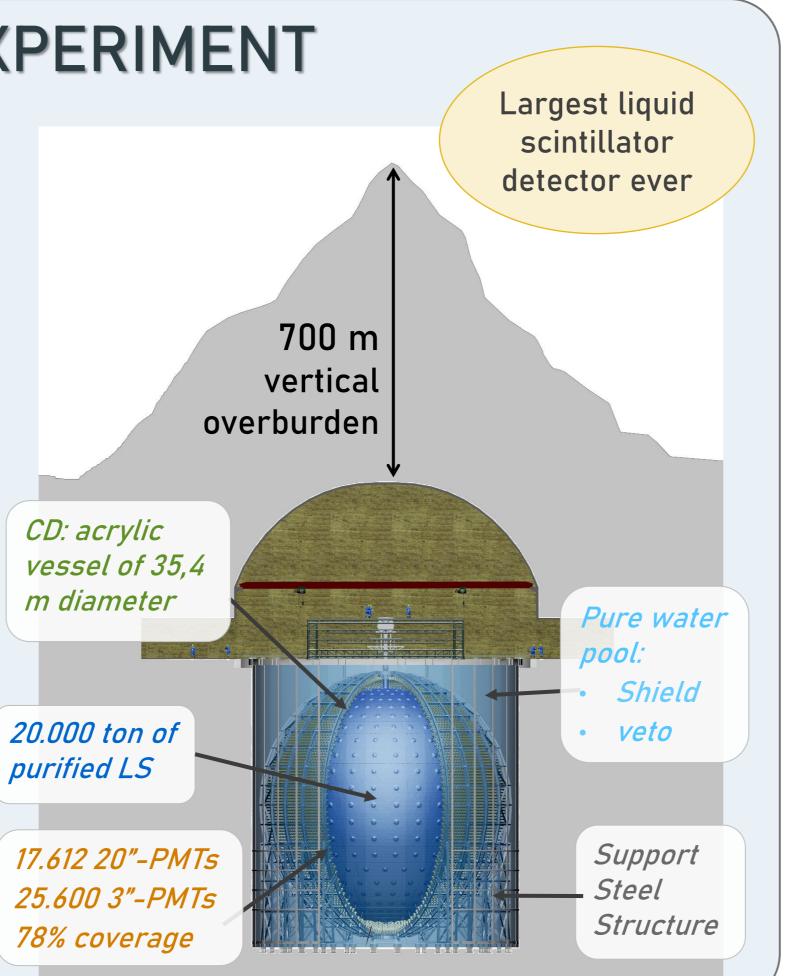
REFERENCES

[1] JUNO, *PPNP*, doi: 10.1016/j.ppnp.2021.103927 [2]JUNO, NIM A, 988 (2021) 164823 [3] Zhu *et al.*, NIM A, 1048 (2023) 167890 [4] Landini *et al.*, arXiv:2406.01381 [5] Ye *et al.*, NIM A, 1027 (2022) 166251

THE JUNO EXPERIMENT

JUNO (Jiangmen Underground Neutrino Observatory) is a medium baseline reactor neutrino experiment [1], under construction near Kaiping (China).

Scientific goals:


• Neutrino mass ordering at 3σ in 6 yrs data taking (reactor $\overline{\nu}$)

UNIVERSITÀ

DI MILANO

科整改為能物理研究所

of High Energy Physics

SCINTILLATOR REQUIREMENTS

The LS recipe (LAB + 2,5 g/L PPO + 3 mg/L bis-MSB) is optimized [2] to have a high light yield at 430 nm. Given the huge mass and dimensions, stringent optical and radiopurity requirements must be satisfied to achieve the target energy resolution (3% at 1 MeV).

Optical requirements:

- Attenuation length (A.L.) > 20 m @ 430 nm
- Light yield: 1.500 p.e./MeV

QA/QC methods:

- ICP-MS
- NAA

- Oscillation parameters at sub-percent level
- Extensive neutrino physics program (solar ν , geo- ν , atmospheric ν , supernovae burst, DSNB)

Main features:

- huge central detector (35,4 m Ø) filled with 20 kt liquid scintillator (LS)
- Unprecedented energy resolution of 3% at 1 MeV
- Extremely low background, high sensitivity

Long term stability (ageing)

Radiopurity requirements:

- Minimum (reactor v): ²³⁸U, ²³²Th < 10⁻¹⁵ g/g
- Target (solar v): ²³⁸U, ²³²Th < 10⁻¹⁷ g/g
- Particle counting
- Attenuation length
- Absorption & emission spectra

Removal of optical and radioactive contaminants via LS purification using **5 different techniques** (1_filtration through alumina, 2_distillation, 3_acid washing and mixing, 4_water extraction, 5_gas stripping).

5 large-scale purification plants (flow rate: 7 m^3/h) have been designed and installed at JUNO site, after a test campaign with pilot plants at Daya Bay.

1) ALUMINA FILTRATION PLANT

<u>Goal</u>: removes optical impurities and increases the attenuation length of LAB

<u>Working principle</u>: the LAB is pumped through a set of 8 columns containing Al_2O_3 powder, which retains optical contaminants and enhances the LAB transparency [3]

Status and results:

The plant is installed and fully commissioned.

successful removal of optical contaminants in

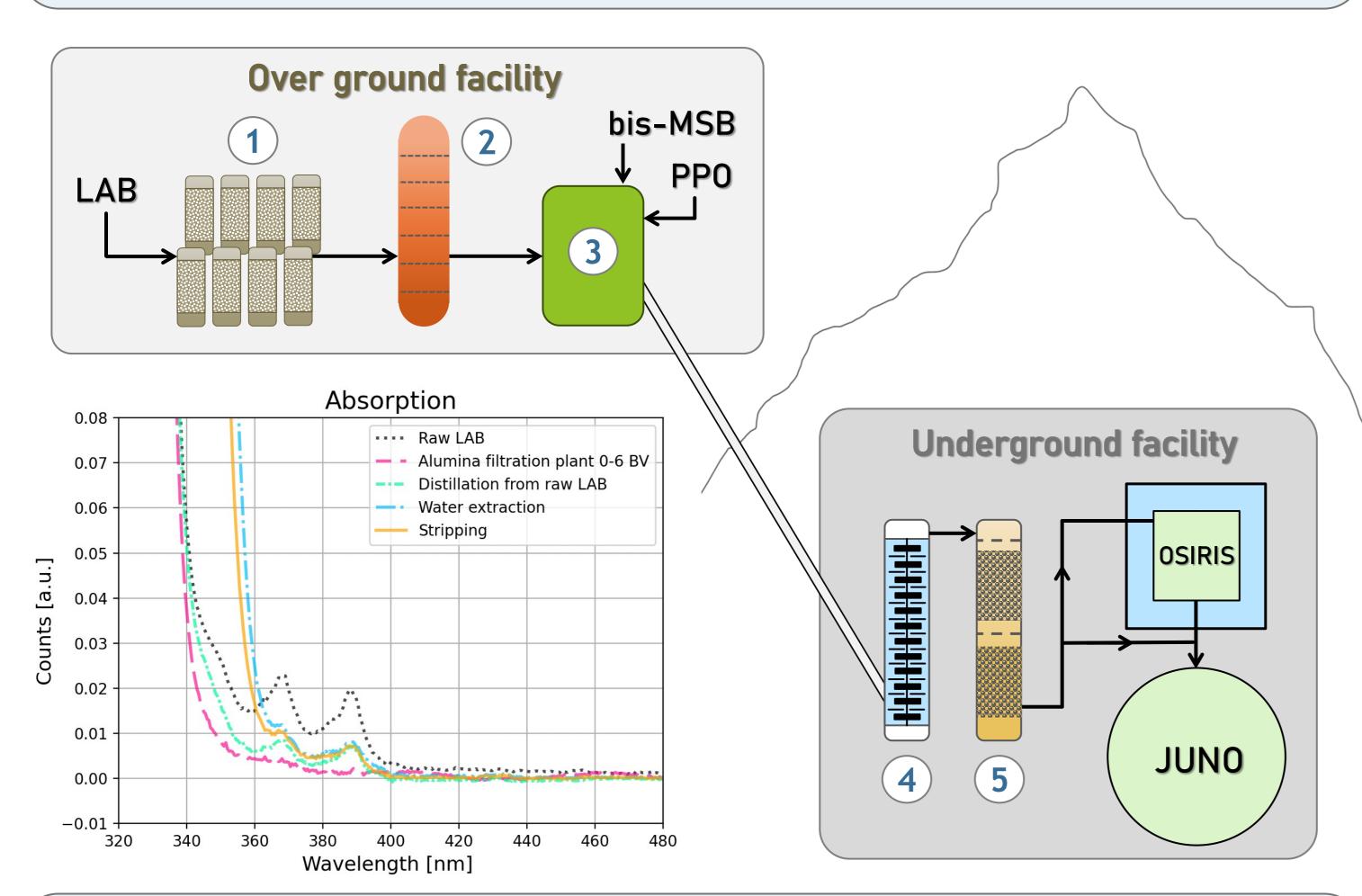
AFP parameters		
N° columns	8 (7+1)	
Height	2,8 m	
Diameter	0,6 m	
Bed volume (BV)	0,5 m ³	
Flow rate per col.	1 m³/h (2 BV/h)	
Filters	220 nm/50 nm	

2) **DISTILLATION PLANT**

<u>Goal</u>: removes from LAB heavy metals, ²³⁸U, ²³²Th, ⁴⁰K and further improves the optical properties

Working principle: fractional distillation of LAB in partial vacuum, inside a column with 6 sieve trays and 30% internal reflux [4]; only the purest vapours are extracted from the top. High-boiling contaminants accumulate in the unevaporated liquid phase.

Status and results:


The plant is installed and fully commissioned.

Distillation column parameters

N° trays	6
Height	7 m
Temperature	210-220 °C
Pressure	5 mbar
Internal reflux	~30%; max 50%
Bottom discharge	max 100 L/h

Successful removal of optical containing in	5
the range 360–400 nm, up to 20 BV.	Diameter
• A.L.: raw LAB \sim 21 m \rightarrow after AFP > 23,5 m	Bed volume (BV)
²³⁸ U<0,31 ppq; ²³² Th=0,9±0,1 ppq (preliminary)	Flow rate per co
results)	Filters

²³⁸ U<0,28	ppq;	²³² Th<0,22	ppq	(preliminary
results)				

Absorption peaks in 360-400 nm range further reduced

3) MIXING PLANT

²³⁸U, ²³²Th removal from PPO and bis-MSB and Goal: dilution to produce the JUNO LS mixture

Working principle: PPO and bis-MSB are added in high concentrations (105 g/L and 126 mg/L) to produce the Master Solution, which is washed with HNO₃ and rinsed twice with water. Finally, it is diluted with LAB to obtain the JUNO LS recipe (2,5 g/L and 3 mg/L).

1 MS batch/day (420 kg PPO + 504 g bis-MSB + 4 m^3 LAB)

Status and results:

Plant ready. Already produced 2 batches of LS.

- Dilution process tested
- ²³⁸U, ²³²Th reduced by both acid washing (1-2 orders) and filtering (1 order). Preliminary results: ²³⁸U < 0,30 ppq; ²³²Th < 0,24 ppq

Mixing plant parameters		
Master Solution	105 g/L PPO 126 mg/L bis-MSB	
Dissolving T	40°C	
Acid washing	40°C with 5% HNO ₃	
N° acid washing	1 time 1:2 (2 m ³ acid)	
N° water washing	2 times, 1:1	

5) GAS STRIPPING PLANT

Goal: removes gaseous impurities dissolved into the LS, mainly 222 Rn, 85 Kr, 39 Ar and O_2 (oxidation, photon quenching)

Working principle: gaseous impurities dissolved into the LS are transferred to the stripping gas (high purity N_2) by desorption mechanisms. The LS and gas are contacted in counter-current flow mode inside a stripping column with unstructured packing [4].

Status and results:

Plant fully commissioned, parameters optimized.

- Good H₂O removal efficiency: 154 ppm \rightarrow 20 ppm
- Excellent particle counting (no particles \geq 0,3 μ m)
- ²³⁸U < 0,30 ppq; ²³²Th < 0,24 ppq (preliminary results)</p>

Stripping column parameters		
Packing	Pall Rings, 13mm	
leight	9 m	
Diameter	500 mm	
emperature	70°C	
Pressure	250 mbar	
N ₂ flow rate	15 Nm³/h	

<u>Goal</u>: removes polar contaminants and metal ions that may contain ²³⁸U, ²³²Th and ⁴⁰K from LS

<u>Working principle</u>: LS and high-purity water are mixed and stirred together inside an extraction tower [5]. The LS is spread in 2-3 mm droplets (dispersed phase) and the removed polar contaminants are transferred to water (continuous phase).

Status and results:

The plant is installed underground.

- Internal commissioning still ongoing to optimize the operating parameters (T, stirring speed,...)
- Water content ~100-200 ppm after filters
- ²³⁸U < 0,30 ppq; ²³²Th < 0,24 ppq (preliminary results)</p> No worsening of A.L. and absorption spectra

作 中 本 院 高能物理所JUNO液闪水萃系统

Extraction tower parameters		
Water-LS ratio	1:3	
Height	13 m	
N° turbines	30	
Temperature	Up to 70°C	
Rotation speed	25-60 r/min	