

Enhancing the LAr VUV Light Collectors of the DUNE Photon Detection System and of low background LAr based experiments

C. Brizzolari^{a,1,2} (on behalf of the DUNE collaboration), A.D. Benaglia^{1,2}, F. Bruni^{1,2}, L. Canonica^{1,2}, C. M. Cattadori^{1,2}, F. Ferella³, C. Gotti^{1,2}, M. Laubenstein³, M. Malberti^{1,2}, F. Meinardi^{1,2}, L. Meazza^{1,2}, S. Nisi³

^aclaudia.brizzolari@mib.infn.it, ¹Università degli Studi di Milano-Bicocca, ²INFN Milano-Bicocca, ³INFN Laboratori Nazionali del Gran Sasso

X-ARAPUCA (XA): from VUV to visible light

Building block of the Deep Underground Neutrino Experiment (DUNE) Photon Detection System for Far Detector 1 (Horizontal Drift) and 2 (Vertical Drift).

LAr VUV scintillation light is abundant (25k photons/MeV @ 500 V/cm)→light downshifted from 128 to 430 nm in two stages to allow for photon trapping with dichroic filter.

Photon Detection Efficiency **ε** depends on:

ε = T_w x (g_{LG} + g_{DF})

T_w: transmissivity of the entrance window, influenced at large angle of incidence by dichroic filter (-30%) g_{1C}: collection efficiency by WLS Light Guide, driven by attenuation length, grade of the driving surfaces, and light sealing of the light guide, SiPM to LG coupling g_{DE}: collection efficiency by dichroic filter

Absorbance and PhotoLuminescence (PL) of pTP & PEN and of the WLS-LG dye: study of the temperature dependance

Teonex Q51 foil: PolyEthilenNaphatalate (PEN)

SiPM-light guide combination used (see also poster **#625**)[1].

Simulation-driven measurements in Milano-Bicocca with increased Light Guide sealing and different Light Guide geometry $(40^{\circ} \text{ cut in the middle}) \rightarrow$ **ε = 4.4-5.0% (**+45-67% w.r.t. baseline) [2].

ε > 2.50% (analysis ongoing)

The ratio between SiPMs area and detector sensitive area is 2.2 times **higher** in HD-XA w.r.t. VD-XA → better performance of VD-XA attributed to better SiPM-light guide coupling (spring loaded circuits, absent in HD), different geometry and all sides covered with SiPMs (in HD only longer ones).

Impact of dichroic filters on **HD-XA Photon Detection** Efficiency (ε)

Baseline HD-XA: +10-15% w.r.t. substrate + pTP only Modified HD-XA (improved light guide sealing and light collection **upon SiPMs)**: **NO IMPACT** on ε w.r.t. substrate + pTP only

The spectra collected at 77K show a more prominent vibronic structuring with respect to the spectra collected at room temperature. The **Teonex Q51 PEN foil** (primary shifter proposed for DUNE FD3 and LEGEND1000) PL yield increases by 40% at 77K while no modification is observed for pTP and for the WLS-LG dye. Our findings on PEN are in agreement with [3]. The increase of the 0-0 vibronic replica in th PL spectra at 77K is due to the reduced self absorption caused by the steepening of the

Large area WLS-LG for double down-shift LAr photon detection

Geant4 simulations for two geometry layouts:

- "slats": 100×10×1 cm³ elongated light guides. SiPM readout at the ends
- "tiles": 31×31×1 cm³ square light guides. SiPM equally distributed on the tile 4 sides Both read with 6x6 mm² SiPMs.
- Nominal design has 12 SiPM/light guide \rightarrow Si / LG surface = 0.43%
- Primary WLS (pTP) deposited onto a PMMA substrate 1 mm away from the light guide

Study of the light guide photon collection efficiency (photons hitting the SiPM / photons hitting the pTP). Left: the drivers of the efficiency are the optical path inside the LG and the SiPM coverage. **Right:** square tiles display higher homogeneity

absorption edge. For the WLS-LG dye, this results in a doubling of the attenuation length at 425 nm.

Radiopurity assessment of the WLS-LG & pure PMMA

		²³⁸ U [†] [ppt]	²³² Th [†] [ppt]	²²⁶ Ra [‡] [mBq/kg]	⁴⁰ K [‡] [mBq/kg]
WLS-	-LG	15 - 25	3 - 6	< 0.16	< 1.7
PMM	IA	23 ± 7	5 ± 2	(16 ± 6) 10 ⁻³	< 0.16

⁺ICPMS and [‡] γ spectrometry.

The WLS-LG after casting, laser-cut and polishing has ²³⁸U and ²³²Th concentration compatible with the bare PMMA. It is qualified for the use in low energy neutrino projects such as LEGEND, DUNE FD3, SoLAr/SOLAIRE.

[1] arXiv:2405.12014 [physics.ins-det] [2] C.M. Cattadori on behalf of the DUNE collaboration 2024 JINST 19 C06007 [3] L. Leonhardt et al. JINST 19 (2024) C05020

preparation reactor. **Right**: the casting reactor and some blue WLS-LG laser cut out from the casted plates. The casting reactor can host up to 5 casting cells, 60 cm side. For larger sizes an industrial partner has been selected and tested.

