Characterising the detector response of the SuperFGD as part of the T2K near detector upgrade

Tristan Doyle (on behalf of the T2K collaboration) tristan.doyle@stonybrook.edu

- Measure ADC counts from
- Can convert ADC counts to photoelectrons (p.e.)

295 km

- The Tokai-to-Kamioka (T2K) experiment is a long-baseline neutrino experiment based in Japan
- ν_{μ} ($\bar{\nu}_{\mu}$) beam produced at J-PARC, characterised by near detectors and detected at Super-Kamiokande
- Measures ν_{μ} ($\bar{\nu}_{\mu}$) disappearance and ν_{e} ($\bar{\nu}_{e}$) appearance

2. Near Detector (ND280) Upgrade

- Replace π^0 detector with three new sub-detectors:
 - → Super Fine-Grained Detector (SuperFGD): Highly segmented target material with ability to reconstruct neutrons and lower momentum protons
 - \rightarrow High-Angle Time Projection Chambers (HATPCs): measure momentum, charge and particle ID with better angular acceptance than before
 - See posters by Matteo Feltre and Ulysse Virginet

Having three fibers per cube T2K Work in Progress allows construction of attenuation length plot \rightarrow More reliable characterisation of response and calibration • For a given distance from the MPPCs, plot observed light Real cosmic data 60 80 100 120 140 from hits in cosmic events Fit distribution as a function of distance with an exponential function to extract attenuation length \rightarrow Measured attenuation length consistent with specification of WLS fibers

- \rightarrow Time-of-Flight (ToF): Precise timing information to reject backgrounds and improve reconstruction
- See physics capabilities in posters by Liz Kneale, Katharina Lachner and Weijun Li

3. SuperFGD Concept and Construction

• 2 million optically isolated 1 cm³ plastic scintillator cubes [1] 56,000 wavelength shifting (WLS) fibers

Time Resolution

- Select hits > 40 p.e. matched in all three dimensions
- Compare mean time of hit to mean time for event
- Gives \sim 1.2 ns time resolution
- \rightarrow Can be improved by electronics firmware update!

7. Neutrino Interactions in the SuperFGD

- \rightarrow Each coupled to a multi-pixel photon counter (MPPC)
- \rightarrow Three orthogonal fibers per cube
- Concept proven in charged particle [2] and neutron [3] beam tests • Detector assembly at J-PARC October 2022 - April 2023:
- Cube layers installed with fishing lines
- Vertical alignment using metallic rods
- Fishing lines replaced with WLS fibers
- \rightarrow MPPCs and LED calibration system installed
- SuperFGD installed in October 2023
- Find description of the electronics in poster by Viet Nguyen

Some of the first neutrino interaction candidates in the SuperFGD. Possible proton (left) and pion (right) candidates are highlighted.

7. Next Steps

- Continue tuning Monte Carlo simulation using measurements of light yield and attenuation length
- Measure dE/dx in the SuperFGD and make selection of proton candidates using Bragg peak
- Head towards first physics analyses with the SuperFGD!

References

[1] Y. Abreu *et al* 2017 JINST **12** P04024 [2] A. Blondel *et al* 2020 JINST **15** P12003 [3] A. Agarwal *et al* 2023 Phys. Lett. B **840** 137843