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Introduction

ANTARES was the first deep-sea neutrino telescope [1]. It consisted of 12 vertical lines containing 25 storeys per line and 3 Optical Modules (OMs) per storey. It detected Cherenkov light
induced by secondary particles from neutrino interactions. Current physics analyses in the low energy range of ANTARES (< 150 GeV) are performed with reconstructed parameters from a
standard y?-like fit [2], which is not able to reconstruct the azimuthal angle (¢) for single-line (SL) events. These events have useful information only in one line of the detector. Low energy
studies in neutrino telescopes are important for some physics analyses: oscillations, dark matter (DM) indirect searches, etc.
In this contribution:

* We propose a deep learning method to improve the reconstruction performance of the zenithal angle (6) for SL events and a first estimation of ¢, to be applied to charged current

muon-(anti)neutrino interactions [3].
* We also develop a machine learning technique to reconstruct the energy of these events, which is very challenging due to the physical processes involved.
 From previous trained networks, we use Transfer Learning to classify ANTARES SL events into tracks or showers.

Direction and energy reconstruction Track vs shower classifier

The direction is reconstruted in terms of the zenithal (6) and the azimuthal (¢) angles that Transfer Learning is a machine learning technique where a model trained on one task is
fully determine the track direction of the neutrinos. The architecture of a Deep reused for a different, but related task. In neural networks, it involves taking a pre-trained
Convolutional Network (DCN) is combined with the predictions of a Mixture Density model and fine-tuning it for a specific task with limited data, such as classifying specific
Network (MDN) [4] to achieve this goal. MDNs allow to estimate an error estimation (o) types of objects [7].
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like events [5]. Same approach was also applied to the reconstruction of the closest point vertex
of the track to the detector and interaction vertex of showers. (Only tracks shown above)
A combination of Neural Networks (NNs) and a Principal Component Analasys (PCA) [6] Performance

worked best for energy reconstruction. Activations of all layers from the zenith and the
closest point (interaction vertex) networks are taken to perform a PCA. The most relevant
subset of obtained components are used as the inputs of a feed-forward NN to infer the
muon energy for tracks and neutrino energy for showers.

* Accuracy: ~80%
e Recall: ~75% for tracks and ~86% for showers
e Precision: ~84% for tracks and ~77% for showers
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Same MC simulations are used as in the direction reconstruction. To achieve these results, Probability of being track (%)

a pre-selection on data must be applied to work with the most suitable events based on
direction and closest point or interaction vertex reconstructions.
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 We applied this new reconstruction methodology to physics analyses, such as the search of dark matter
candidates (WIMPs) in the Sun (see poster #399).

» We expect to improve the flux sensitivities in the WIMP mass range where the SL events are already dominant
(< 150 GeV) when the method is applied to the full ANTARES dataset.
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