

Office of Science

NuGraph3: Toward Full LArTPC **Reconstruction using GNNs**

Adam Aurisano, for the Exa.TrkX/NuGraph Collaboration Department of Physics, University of Cincinnati – adam.aurisano@uc.edu

Traditional Reconstruction

- Standard reconstruction package for LArTPC experiments is Pandora
- Large number of pattern recognition algorithms applied adaptively in a series of stages
- Goal: build a full particle hierarchy
- Low-level objects stitched together into high-level particles
- an event \rightarrow x. drift position

Track (p), daughter of primary p

Track (p), primary daughter of 1

Parent ν_{μ} interaction verte but with some shortcomings - Starts with 2D reconstruction

> Some ambiguities cannot be resolved in later stages

• Pandora is sophisticated,

- Reconstruction is largely serial
 - Pathologies in early stages compound in

See posters #130 and #389 in this session for more details on using GNNs for tau neutrino identification

- Tau neutrino events are important analysis target in the DUNE era
 - Frequently high multiplicity
 - Separating from other interactions requires excellent

R. Acciarri et al, arXiv:1708.031351

later stages

reconstruction of internal kinematics • Success depends on avoiding reconstruction pathologies

• Graphs are a mathematical structure that represents objects (nodes) and binary relations between them (edges)

NuGraph2

- Message-passing graph neural networks iteratively learn smart embedding of graph structure
 - Graph structure provide inductive bias to improve learning for problem being solved
- NuGraph2 is designed to classify each detector hit according to the type of particle that created it

Hierarchical GNNs

nodes

hower (e^+) , daughter of primary π^+

Frack (μ^{-}), primary daughter of ν_{μ}

- Nexus block ϕ_n ϕ_u Mean Pooling See **poster #162** in this session
 - NuGraph2 achieves ~95% overall efficiency and purity
 - ~98% consistency between planes
 - Without 3D connections, ~70% consistency

• Hierarchical GNNs solve problem by allowing longdistance information flow

• Nodes on layer L are only connected to nodes in adjacent layers • Hierarchical structure must be learned in-situ

- Flat message-passing GNNs have some weaknesses
 - Each message-passing iteration expands distance between connected nodes
 - Too many iterations degrades messages • "oversquashing"

Building the Hierarchy

- through different hierarchical layers
- Hierarchical layers captures rich, multi-scale information in a natural way
 - Better reflects the inductive bias of the problem
- Message passing can occur both between and within levels
- Collision Primary Tracks and Trajectory **Physical Space** System Particles Showers Seaments
- Definition hierarchy levels can be used to naturally represent different reconstruction stages and permit learning the structure of neutrino events at different resolution scales
- Possible layers include
 - 2D planar input graphs
 - 3D space-points and particle trajectories
 - Primary particles
 - Collision systems
 - Events

- In NuGraph2, graphs are constructed in advance using Delaunay triangulation
 - Graph structure is tuned to maximize information flow and is not a reconstruction product of interest
- Hierarchical graph structure directly mirrors the reconstructed particle tree
 - Is a reconstruction output of interest

NuGraph3

Level 2

Layer L-1

- Message-passing iterations in layer L-1 are used to predict clustering coordinates
- Nodes close in clustering space are aggregated into a single node in layer L
- Ground truth definition in predicting clustering coordinates shapes the meaning of each layer

True

Semantic

Predicted

Semantic

Labels

Labels

- Predict coordinates in clustering space for each node
- Electrostatic-inspired loss functions encourage nodes from same object to cluster together
- Currently implementing to cluster hits into particles
- Object condensation is a grid-free clustering approach based on an electrostatic analog
- Predict a "charge" per point to determine how strongly points should attract each other in abstract clustering space
 - J. Kieseler, arXiv:2002.03717

- First step in developing NuGraph3 is adding in a single event node
- Event node aggregates information from all nexus nodes through hierarchical message-passing mechanism

- Semantic decoder head is attached to the planar graphs in NuGraph2/3 • Event node aggregates information across full graph
- Ideal for extracting reconstructed quantities associated with full events
- First test: regress interaction vertex position from event-level features

Semantic performance of NuGraph3 is comparable to NuGraph2 despite breaking MIP category into muons and pions								
	pion -	0.76	0.13 muon	0.05	0.032	0.017	0.0094	
	uonu	0.03	0.96	0.0037	0.0037	0.0026	0.0048	
•	True hadron	0.041	0.011	0.92	0.01	0.0013	0.014	
	label shower	0.023	0.0084	0.0078	0.91	0.014	0.04	
	michel	0.053	0.024	0.0049	0.086	0.74	0.094	
	diffuse	0.013	0.036	0.03	0.06	0.019	0.84	

Future:

0.2

- Replace externally reconstructed 3D spacepoints with in-situ reconstruction
- Integrate particle reconstruction with object condensation
- Regress relevant reconstructed quantities at each hierarchical level Enforce physical consistency in full reconstruction