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Deep Underground Neutrino Experiment

Figure 1: Schematic of the DUNE experiment [1].

■ DUNE is a next-generation long-baseline neutrino
experiment.
□ Near detector (ND) complex placed at Fermilab.
□ 70-kt liquid argon far detector (FD) 1300 km

away in South Dakota.
■ Neutrino oscillation physics from accelerator-

produced neutrino beam.
■ Rare events like supernova neutrinos, potential

nucleon decays and other BSM phenomena.

Figure 2: Sensitivity to CP violation for 50% of δCP values
as a function of time [1].

■ DUNE will be built using a staged approach.
■ A more capable ND is needed in order to reach

the ultimate physics goals of DUNE.

Why a Near Detector?

Figure 3: Representation of the ND hall in Phase II,
showing its different subcomponents [2].

■ Constrain systematic uncertainties for the
oscillation program.

■ Provide continuous monitoring of the beam.
■ Opportunities for neutrino interaction cross

sections and BSM physics measurements.

ND-GAr concept

Figure 4: Cross section of the ND-GAr geometry,
showing the HPgTPC, ECal and magnet.

■ ND-GAr is a magnetised high-pressure gaseous
argon TPC, surrounded by an ECal and a muon
tagger [3].

■ The gaseous argon provides lower tracking
thresholds and larger angular acceptance.

■ The B field and the ECal allow for particle
identification and momentum and sign
reconstruction.

■ HPgTPC design currently in progress.

Muon/pion separation in the ECal
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Muon preco = 951 MeV/c
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Figure 5: Distributions of energy deposits in the ECal
for a muon (left) and a charged pion (right) with similar
momentum.

■ Hadronic interactions in the ECal significantly
different from those of muons.

■ Use Boosted Decision Trees (BDTs) trained on
ECal features to separate muons from charged pions.

■ We achieve an 80% muon purity in the relevant
momentum range for νµ CC interactions.
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Figure 6: Feature distributions for muons and pions in the
range 0.8 ≤ p < 1.5 GeV/c used for the BDT training.
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0.80 ≤ preco < 1.50 GeV/c
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Figure 7: Predicted probabilities assigned by the BDT to
true muons (blue) and charged pions (red).

Proton identification
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Figure 8: Distribution of dE/dx measured with the
TPC (left) and β measured by time-of-flight with the
ECal (right) for two different momentum bins.

■ Measuring the mean energy loss with the TPC
allows us to identify protons up to 1.5 GeV/c.
□ Use truncated mean to avoid fluctuations in the

Landau tail.
■ A time-of-flight measurement with the inner

layers of the ECal can be used for PID at high
momenta.
□ Using SiPMs with a time resolution under 500 ps

allows for proton separation up to 3.0 GeV/c.

Event selection

10−1 100 101

Momentum [GeV/c]

0

500

1000

1500

2000

C
ou

nt
s

DUNE Simulation
Work In Progress

K±

π±

e±

p

µ±

GENIE

0π± 1π± ≥ 2 π±

GENIE π± Multiplicity

0π
±

1π
±

≥
2
π
±

R
ec

o
π
±

M
u

lt
ip

lic
it

y

0.99

0.01

0.00

0.19

0.67

0.13

0.09

0.21

0.70

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9: Left panel: reconstructed momentum
distribution of selected primary muon candidates,
broken down by true ID, and true primary muon
momentum. Right panel: comparison between true
and predicted charged pion multiplicities per event.

■ The different PID approaches can be combined in
order to cover all cases and energy ranges.

■ The muon BDT score can be used to identify the
primary lepton in νµ CC interaction inside the
fiducial volume.

■ Starting from the selected muon, we can
determine the number of charged pions in
the CC events.

Next steps

■ Generate Monte Carlo production of events
starting inside the HPgTPC volume, with full
reconstruction, in both neutrino and antineutrino
mode.

■ Produce neutrino interaction samples divided in
pion multiplicity: 0π, 1π and ≥ 2π.

■ Run new samples through long-baseline analysis to
understand impact of ND-GAr design choices.
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