Developing the Reconstruction of a Magnetised Gaseous Argon TPC for the DUNE Near Detector

Francisco Martínez López for the DUNE Collaboration

Queen Mary University of London, Rutherford Appleton Laboratory and University of Southampton

Deep Underground Neutrino Experiment

Why a Near Detector?

Figure 1: Schematic of the DUNE experiment [1].

- DUNE is a next-generation **long-baseline neutrino** experiment.
 - \square Near detector (ND) complex placed at Fermilab.
- \Box 70-kt liquid argon far detector (FD) 1300 km away in South Dakota.
- Neutrino oscillation physics from acceleratorproduced neutrino beam.
- **Rare events like supernova neutrinos**, potential nucleon decays and other **BSM** phenomena.

Figure 2: Sensitivity to CP violation for 50% of δ_{CP} values as a function of time [1].

- DUNE will be built using a **staged approach**.
- A more capable ND is needed in order to reach the ultimate physics goals of DUNE.

Figure 3: Representation of the ND hall in Phase II, showing its different subcomponents [2].

- Constrain **systematic uncertainties** for the oscillation program.
- Provide continuous **monitoring** of the beam.
- Opportunities for neutrino interaction cross sections and **BSM physics** measurements.

ND-GAr concept

Muon/pion separation in the ECal

Figure 6: Feature distributions for muons and pions in the range $0.8 \le p < 1.5 \text{ GeV}/c$ used for the BDT training.

Figure 4: Cross section of the ND-GAr geometry, showing the HPgTPC, ECal and magnet.

- ND-GAr is a magnetised high-pressure gaseous argon TPC, surrounded by an ECal and a muon tagger [3].
- The gaseous argon provides **lower tracking** thresholds and larger angular acceptance.
- The B field and the ECal allow for **particle** identification and momentum and sign reconstruction.
- HPgTPC design currently in progress.

 $X - X_{\rm CM}$ [cm] $X - X_{\rm CM}$ [cm]

Figure 5: Distributions of energy deposits in the ECal for a muon (left) and a charged pion (right) with similar momentum.

- Hadronic **interactions in the ECal** significantly different from those of muons.
- Use **Boosted Decision Trees** (BDTs) trained on ECal features to separate muons from charged pions.
- \blacksquare We achieve an 80% muon purity in the relevant momentum range for ν_{μ} CC interactions.

Figure 7: Predicted probabilities assigned by the BDT to true muons (blue) and charged pions (red).

Proton identification

Event selection

Next steps

- Generate Monte Carlo production of events starting inside the HPgTPC volume, with full **reconstruction**, in both neutrino and antineutrino mode.
- Produce neutrino interaction samples divided in **pion multiplicity**: 0π , 1π and $\geq 2\pi$.
- Run new samples through long-baseline analysis to understand impact of ND-GAr design choices.

 dE/dx_{proton}

Figure 8: Distribution of dE/dx measured with the TPC (left) and β measured by time-of-flight with the ECal (right) for two different momentum bins.

- Measuring the **mean energy loss** with the TPC allows us to **identify protons** up to 1.5 GeV/c. \square Use truncated mean to avoid fluctuations in the Landau tail.
- A **time-of-flight measurement** with the inner layers of the ECal can be used for PID at high momenta.
- \Box Using SiPMs with a time resolution under 500 ps allows for proton separation up to 3.0 GeV/c.

Figure 9: Left panel: reconstructed momentum distribution of selected primary muon candidates, broken down by true ID, and true primary muon momentum. Right panel: comparison between true and predicted charged pion multiplicities per event.

- The different PID approaches can be combined in order to cover all cases and energy ranges.
- The muon BDT score can be used to **identify the primary lepton** in ν_{μ} CC interaction inside the fiducial volume.
- Starting from the selected muon, we can determine the number of charged pions in the CC events.

References

DUNE collaboration, DUNE Far Detector Technical Design Report, Volume I, JINST 15 (2020) T08008.

[2] DUNE collaboration, DUNE Near Detector Conceptual Design Report, Instruments 5 (2021) 31.

[3] DUNE collaboration, A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE, arXiv:2203.06281 [hep-ex].

University of **Southampton** Queen Mary Particle Physics

This document was prepared by the DUNE Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

