Status of Charged-pion Cross-section Measurements from NOvA

Palash Kumer Roy, Mathew Muether, Mike Dolce - Wichita State University

(1) NOvA (NuMI Off-Axis ν_{e} Appearance Expt.)

$>$ NOvA is a long-baseline neutrino oscillation experiment aiming to determine mass hierarchy, oscillation parameters, and CP violation phase.
$>$ The NOvA experiment consists of
$>$ 14-kton far detector, located in Ash River, MN.
$>$ 0.3-kton near detector located at Fermilab.
$>$ Near detector exposed to $\mathbf{1 - 3} \mathbf{G e V}$ muon-type ($\mathbf{9 5 \%}$ pure) neutrinos from NuMI > Significant QE, RES, DIS and MEC interactions (Figure 1, GENIE3).
$>$ Inclusive charged-current charged-pion production gives access to dominant RES and DIS channels (Figure 2)

(2) Inclusive $\nu_{\mu} \mathbf{C C} \pi^{ \pm}$selection

$>$ A simulated $\nu_{\mu} \mathrm{CC} \pi^{ \pm}$event in NOvA is shown in Figure 3.
$>$ Require reconstructed interaction vertex containment in fiducial volume, containment of visible energy, and at least two "prongs" (reconstructed candidate particles).

- Prong particle likelihood is scored using deep-learning based CVN (Convolutional Visual Network)
$>$ Muon candidate prong identified by MuonID score $>\mathbf{0 . 2}$ (Figure 4).
$>$ Candidate pion prong identified by highest PionID score $>\mathbf{0 . 7 5}$ (Figure 5).

(3) Particle kinematic reconstruction
$>$ Particle energies are determined calorimetrically from visible prong energy.
$>\sim 4-5 \%$ resolution on muon energy.
$>$ ~100-150 MeV resolution on pion energy
$>$ Particle direction is determined from Hough Transform + Kalman Filter.
$>$ ~2-5 degree resolution on muons angle.
$>10-15$ degree resolution on pion angle.

(4) Studying Differential Cross-Section Measurement

$>$ We are exploring a cross-section measurement differential in the kinematics of $>$ From resolution and statistics from 13.6×10^{20} POT, an initial binning is under study:
the muon and leading pion.
$>$ Figures 6-8 show $N_{\text {sel }}$ (selected events), P $\begin{aligned} & \begin{array}{l}\text { (signal/background), and } \epsilon(\text { selected signal/true signal } \\ \text { count) respectively which contribute to the cross-section as: }\end{array}\end{aligned} \quad \sigma=\frac{N_{\text {sel }} \times P}{N_{t} \times \Phi \times \epsilon}$
$>T_{\mu}: 18$ bins from 0.5 to 2.5 GeV
$>T_{\pi}: 3$ variable bins from 0.2 to 0.73 $>\theta_{\mu}: 18$ bins from 0 to 72 degree $>\theta_{\pi}: 8$ variable bin from 0 to 90 degree

(5) Uncertainty Studies

$>$ Initial statistical and systematic uncertainties (including GENIE interaction uncertainties and detector modeling effects) were studied and are shown in Figure 9 for
$350<T_{\pi}<550(\mathrm{MeV})$ and $30<\theta_{\pi}<40$
a) Statistical uncertainties are below 20% for most of the space.
b) Background uncertainties before constraints are comparable to statistical uncertainties.
c) Uncertainties on the efficiency are also comparable to statistical uncertainties in phase-space shown.

(6) Future Work

$>$ Study unfolding.

- Transition events from reconstructed quantities into their true quantities.
$>$ Continue systematic uncertainty evaluation and data-driven constraints.
$>$ Optimize/assess kinematic binning including inclusion of low and high energy pions which have reduced efficiencies.

