

- NOvA is a long-baseline neutrino oscillation experiment
- Main goals to measure the oscillation parameters: θ_{23} , Δm_{23}^2 , δ_{CP}
- High intensity neutrino beam for cross section measurements with Near Detector: $\sim 10^{13}$ protons on target per second, 900 kW
- Detectors designed for efficient muon and electron reconstruction
- Detectors are active calorimeters: important contribution to

• Wide energy spectrum for unreconstructed π^{\pm}

- Relevant systematic uncertainties in neutrino energy estimation from hadronic energy (E_{had}) [1-3]
- NOvA's latest GENIE simulation (CMC) yields prominent

uncertainties for: E_{had} Fraction = $1 - \frac{E_{\mu}}{E_{\nu}}$

neutrino energy from hadronic activity

• 37% of ν_{μ} -CC events yield $1\pi^{\pm}$ plus other hadrons (π^{0} or X)

4. Looking Forward

- Further testing to achieve maximum efficiency
- Tests for energy estimation of individual particles

References

[1] MINERvA Collaboration, DOI 10.1103/PhysRevD.100.072005 (2019) [2] T2K Collaboration, DOI 10.1103/PhysRevD.101.012007 (2020) [3] NOvA Collaboration, DOI 10.1140/epjc/s10052-020-08577-5 (2020) [4] B. Cheng et. al., DOI 10.48550/arXiv.2112.01527

XXXI International Conference on Neutrino Physics and Astrophysics June 16-22, 2024, Milan, Italy

