Measurement of K⁺ Production in Charged-Current Neutrino Interactions in the T2K Experiment

Katarzyna Kowalik on behalf of the T2K Collaboration National Centre for Nuclear Research, Poland email: Katarzyna.Kowalik@ncbj.gov.pl

Co-funded by the European Union

1. The T2K Experiment

2. The ND280 Near Detector

Tokai-to-Kamioka is a long-baseline neutrino oscillation experiment in Japan, optimised to study neutrino oscillations via measurements of $v_{\mu}(\overline{v_{\mu}})$

The ND280 detector is magnetised detector (0.2T), situated 280m from the neutrino production target and at 2.5^o off-axis angle.

- 3 Time Projection Chambers (TPC) Ο provide tracking and particle identification
- 2 Fine Grained Detectors (FGD) used as Ο tracker and target for interactions:
 - FGD1 is CH scintillator tracker
 - FGD2 has CH and H₂0 layers Ο

disappearance and $v_{e}(\overline{v_{e}})$ appearance in the beam.

The high intensity $v_{\mu}(\overline{v_{\mu}})$ beam is produced at J-PARC accelerator complex and travels towards the near and far detector. The energy of the beam peaks ~600 MeV at 2.5° off-axis angle.

POD is the π^0 detector

- ECAL is electromagnetic calorimeter Ο
- SMRD is muon detector \bigcirc

The ND280 detector upgrade was completed in May 2024. The POD detector was replaced with a new scintillator tracker and two more TPCs.

3. Proton Decay Searches

- The proton decay channel $p \to K^+ \bar{\nu}$ is predicted in SUSY models
- Interactions of atmospheric neutrinos with K⁺ production are background that we aim to constrain $p \rightarrow \bar{\nu}K$
- Best limit comes from Super Kamiokande Ο • Unique opportunity for Liquid Argon TPC

5. Cross-section Extraction

$p \rightarrow e^+ \pi$ minimal SUSY SL $p \rightarrow e^+ \pi$ predictions non-SUSY SO(10 10³³ τ /B (years)

4. v_{μ} CC-1K+ Sample in ND280

We start with selection of μ^{-} in FGD1 and search for K⁺ using TPC PID cuts. Both tracks must reach TPC2 to be identified there and have common vertex. The phase-space is restricted to: $\circ p_{u} > 0.25 \text{ GeV}, \cos_{u}(\theta) > 0.4$ \circ 0.4 < p_{K+} < 0.95 GeV, cos_{K+}(θ) > 0.65

GENIE large signal sample: efficiency ~15%, purity ~49%

Background subtraction method is used with control samples constraining main CC-backgrounds. The GENIE fit to data for control samples gives factors that are used to scale the true MC background topologies in the signal region.

6. Systematic Uncertainties

We repeat sidebands fit and cross-section calculations for different MC toy sets describing detector systematics, cross section model and flux uncertainties to obtain systematic errors (here GENIE as fake data).

Error source	Xsec. relative error
Statistics data	26%
Statistics mc	5%
Detector systematics	12%
Model systematics and Flux	20%

7. Status and Plans

- Single bin measurement in the restricted phase-space Ο We expect ~60 events selected in GENIE for 11.53x10²⁰ POT Ο Cross-section predictions vary up to 30% between generators Ο
- Signal region has been unblinded and the analysis is under the review Ο Results with data and publication in near future Ο

Progress

XXXI International Conference on Neutrino Physics and Astrophysics