Transverse Kinematic Imbalance Analysis and Pion Trackless Reconstruction at the Upgraded T2K Near Detector Weijun Li (weijun.li@physics.ox.ac.uk), University of Oxford — UNIVERSITY OF On behalf of T2K Collaboration, Neutrino 2024 OXFORD

Introduction

The T2K near detector has undergone an upgrade. The new active target, the Super Fine-Grained Detector (SFGD) (see poster by Tristan Doyle for more hardware details), is made up of about 2 million 1 cm³ scintillation cubes, offering excellent timing resolution and isotropic tracking. The upgrade has been completed with the installation of two high angle time projection chambers and six time-of-flight planes, and is collecting data with a beam intensity above 700 kW **NOW**!

The excellent tracking capability of SFGD has enabled the application of novel techniques and holds great potential in improvement measurement resolution.

Transverse Kinematic Imbalance (TKI)

- Schematic sketch of TKI variables are shown in Fig. 9 [1,2].
- Probe both initial nucleon states and FSI.
- Require high kinematic reconstruction quality.
- The Elastically Scattered and Contained

Fig. 9. Schematic

The pion trackless (TL) reconstruction

- Use the unique delay chain of the pion, $\pi \rightarrow \mu \rightarrow e$, as shown in Fig. 3, to both infer its presence and to reconstruct its momentum.
- detailed in Table below.
- resolution, as shown in Fig. 4,
- NEUT 5.6.0.0.

- (ESC) proton technique [3] exploiting the granularity of SFGD, select protons with high dE/dx at the last few nodes.
- The $\nu_{\mu}CC0\pi 1(ESC)p$ selection has excellent resolution and minimal bias in p_p , and thus also in TKI variables, e.g. $\delta \alpha_T$, as shown in Fig. 10 and 11 respectively.

45

t 35

() 30

й 25

b 20

#

15

- Combine the reconstruction and ESC the proton technique to select a $v_{\mu}CC1\pi^+1p$ sample.
- Excellent resolution for TKI variables, e.g. p_N , as shown in Fig. 12.

Using only kinematics of hadronic products, COM variables, e.g. the pion decay angle, $\theta_{\pi}^{(0)}$, are independent of the initial nucleon state, as shown in

- A promising ~40% decrease in the width of double TKI, δp_{TT} , hydrogen events from for previous TPC-based estimation [1], as shown in Fig. 13.
- Combining TKI with COM variables could lead to a highpurity hydrogen sample.

Fig. 7, with different short-range correlation ratios, R_{SRC} .

Distributions of COM variables probe FSI and select hydrogen events, as shown in Fig. 8.

Conclusion

SFGD has great resolution and lower thresholds leading to better measurements of important quantities, like the TKI variables, and enabling a novel pion trackless reconstruction method. Additionally, exploiting the capability of measuring hadronic kinematics in SFGD, an innovative set of variables, the COM variables, are derived, which are excellent FSI probes independent from initial nucleon states.

[1] X.-G. Lu, D. Coplowe, R. Shah et al., Phys. Rev. D 92 (2015) 051302 [2] X.-G. Lu, L. Pickering, S. Dolan et al., Phys. Rev. C 94 (2016) 015503 [3] Lu, X.-G., M. Betancourt, and for the MINERvA Collaboration. Journal of Physics: Conference Series 888, no. 1 (1 September 2017): 012120.