FERMILAB-POSTER-24-0083-PPD

New RES and DIS uncertainties for NOvA cross-section model

Maria Martinez-Casales Fermilab, mcasales@fnal.gov

Michael Dolce Wichita State University, michael.dolce@wichita.edu

1. Interaction model

- NOvA is a long-baseline neutrino oscillation experiment with its Near Detector (ND) at Fermilab.
- Designed to constrain oscillation parameters Δm_{32}^2 , sin² θ_{23} , and δ_{CP} .
- Use simulations based on the GENIE neutrino event generator to extrapolate ND data into
- GENIE 3.0.6 with Comprehensive Model Configuration N18_10j_00_000. • We present refinements in pion-production

uncertainties with new parameters not previously captured in GENIE.

Neutrino - free nucleon interactions		
Quasi-Elastic (QE)	Valencia 1p1h Z-expansion axial form facror	
Resonance (RES)	Berger-Sehgal	
Deep inelastic Scattering (DIS)	Bodek-Yang	
Multinucleon interactions		
Meson exchange current (MEC)	Valencia MEC custom adjustment to NOvA data for 2p2h	

2. ND selection

- RES and DIS interactions modes are leading contributors to pion production at larger hadronic visible energy.
- RES interactions are a significant fraction of the inclusive NOvA ND selection (left).
- We investigate pion production modeling with a subset of interactions where a single π^{\pm} is identified in the final state, $\mu + \pi + X$ (right).

Interactions with the nuclear environment hN Semi Classical Cascade Final State Interactions (FSI) Custom fit to external pion scattering data.

3. RES Scaling Uncertainty

- NOvA has several RES-focused uncertainties, however none that address Δ and higher order resonances directly.
- Major contribution of Δ resonance production, and non-trivial contribution of higher mass resonances in the ND selection (right).
- Introduce two new uncertainties:
 - Delta Resonance scale: interaction is reweighed by $\pm 20\%$ at $\pm 1\sigma$.
 - Higher Resonances scale: interaction is reweighed by $\pm 20\%$ at $\pm 1\sigma$.
- Motivated by past NOvA cross section measurements that observed excess of RES events.

4. RES
$$\frac{\sigma(\nu p)}{\sigma(\nu n)}$$
 Uncertainty

- Relative resonance contributions of $\sigma_{RES}(\nu p)$ and $\sigma_{RES}(\nu n)$ scatters are not exactly known – uncertainty created to account for this.
- Adjusts $\sigma_{RES}(\nu p) / \sigma_{RES}(\nu n)$ ratio by $\pm 5\%$ at $\pm 1\sigma$, linearly up to $\pm 3\sigma$.
- Parameters change expected FS hadrons NOvA observes, impacting hadronic visible energy (table, right).

- **Below**: Combined $\pm 1\sigma$ error from the RES $\frac{\sigma(\nu p)}{\sigma(\nu n)}$ and DIS hadronization uncertainties:
 - Inclusive sample (right): error on true charged pions – minimal impact, 2%.

5. DIS Hadronization Uncertainty

- Probabilities for FS hadron pairs in GENIE are **fixed** for ν (of charge \bullet Q=1) and $\bar{\nu}$ (of charge Q=0) :
 - $P(p + \pi^0) = \frac{1}{3}, P(n + \pi^+) = \frac{2}{3}.$
 - $P(p + \pi^{-}) = \frac{2}{3}, P(n + \pi^{0}) = \frac{1}{3}.$
- Two parameters allow the probabilities of the FS hadronic pairs (1) pion + 1 nucleon) to vary in DIS interactions.
- For ν , one limit of the uncertainty predicts an entirely $(p + \pi^0)$ FS; \bullet the other is entirely $(n + \pi^+)$ (table, below).

Feature	ν	$\bar{\nu}$
struck nucleon	n	р
final state charge, Q	+1	0
hadron combinations	$(1p + 1\pi^0), (1n + 1\pi^+)$	$(1n + 1\pi^0), (1p + 1\pi^-)$
default GENIE	p=1/3, n=2/3	p=2/3, n=1/3
uncertainty limits	2σ , - 1σ	$1\sigma, -2\sigma$

	$\Delta^0 \to \pi^- + p$
$\bar{\nu}+n \rightarrow \mu^+ + \Delta^-$	$\Delta^- \rightarrow n + \pi^-$

 ν Interaction

 $\nu + p \rightarrow \mu^- + \Delta^{++}$

 $\nu + n \rightarrow \mu^- + \Delta^+$

 $\bar{\nu} + p \rightarrow \mu^+ + \Delta^0$

GeV

Events

 Δ Decay

 $\overline{\Delta^{++}} \to p + \pi^+$

 $\Delta^+ \to \pi^+ + n$

 $\Delta^+ \to \pi^0 + p$

 $\Delta^0 \to \pi^0 + n$

• Pion-rich sample (left): approximately 5% due to interference between the two systematics.

7. Conclusion

- NOvA's simulation contains a large fraction of pion-producing events.
- Three new degrees of freedom associated with

rich samples.

- RES Scaling uncertainties have the largest impact.
- NOvA's extrapolation procedure minimizes the effect of cross section systematics in the oscillation analysis (left).
- In the pion-rich sample, these parameters are important degrees of freedom, and may be important in pion-sensitive cross section measurements (right).

pion production were created: • The RES $\frac{\sigma(\nu p)}{\sigma(\nu n)}$ and DIS hadronization degrees of freedom do not substantially impact the NOvA inclusive sample, and produce an approximate 5% effect in $\mu + \pi + X$ sample. • The Δ scaling and higher resonances scale uncertainties are a larger effect on NOvA predictions.

• These uncertainties will prove important contributions to pion-sensitive cross section measurements.

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. We would like to acknowledge the support of Department of Energy Office of Science Grant : DOE DE-SC0023362.

