

when binding specifically with $Ba^{2+}[2]$.

2. Interaction with Ba²⁺ (chelation) produces structural and chemical changes in the

XPS of oxygen evolution with Ba addition

molecule that can be measured by surface science techniques like XPS and STM/STS [3].

Outlook: *in-situ* **detection of chelation**

Ba²+ beam

Thermalisation

chamber

- prove the Majorana nature of neutrinos and help extending the Standard Model.
- 2.NEXT reconstructs the shape and energy of a track left by 2e- in the decay of ¹³⁶Xe.

- 3.Ba²⁺ drifts to the cathode where a it and emits a fluorescence signal.
- 5. The challenge is finding **a single Ba²⁺ ion** in a chamber with > 1 ton of Xe and on an area of $\sim 1 \text{ m}^2$.

Steering

electrodes

Barium beam emulating NEXT conditions

Ba²⁺ source and

velocity filter

- 1. Sources of Ba²⁺ consist in evaporating Ba as salt [3] or metal and ionising it [6].
- 2. The source at Ben Gurion University includes

a velocity filter, a direction steerer into a thermalisation chamber. The atom reaches the surface of the sample with **low** energy.

3. Different cations are produced in the evaporation. Ba²⁺ is filtered by its m/q ratio.

