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CUPID baseline design

CUORE Upgrade with Particle IDentification
• Neutrinoless double-beta decay is an extremely rare (  yr) 

hypothetical process: 
 

• Signature - monoenergetic peak at the  energy

T1/2 > 1025 − 1026

(A, Z) → (A, Z + 2) + 2e−

Qββ

• Crystal absorber coupled to the 
temperature sensor:  

• Operate at 10-30 mK to be able to detect 
 in the order of 0.1 mK 

• High energy resolution: ~5 keV FWHM 
(0.2%) at the 

ΔT ∝ ΔEdeposited

ΔT

Qββ

• Double read-out of heat and light 
signals 

• Particle discrimination using light 
detectors (LD): >99.9% -rejection 

• Technology proven in CUPID-0 and 
CUPID-Mo demonstrators

α

In case of observation: 
• Lepton number violation 
• Majorana nature of neutrino:  
• Neutrino mass ordering 
• Source for matter-antimatter asymmetry

ν = ν

The modern  experiment requires: 
• Large exposure  (big mass, long 

life-time) 
• Large  (isotopic abundance) 
• Small  (very low background in the ROI) 
• Small  (good energy resolution) 
• High detection efficiency

0νββ
M × t

a
b
ΔE

• CUPID will use the CUORE cryostat located 
underground at Gran Sasso National 
Laboratory 

• 1596 Li2100MoO4 crystals (45x45x45 mm3) 
assembled in 57 towers of 28 crystals each 

• 240 kg of 100Mo (>95% enrichment)  
• 1710 Neganov-Luke Ge light detectors with 

SiO anti-reflective coating to maximise light 
collection 

• Neganov-Luke effect will enhance the S/N 
ratio to reach our pileup rejection capability 
through PSD.

LMO crystals 
• SICCAS* (Shanghai, China) has the capability 

to produce the enriched crystals, procuring the 
isotope from a Chinese manufacturer 

• Crystal pre-production is ongoing 
• Tests at LNGS and LSC to validate 

performance/radio purity and assess 
contamination 

• Strategies to further reduce background level 
by improving crystal surface cleaning are 
being developed 

• Full production at a large scale for CUPID is 
viable and currently under negotiation.

CUPID requirements 
• >99.9% -rejection efficiency 
• Energy resolution: 5 keV FWHM at  
• LD baseline resolution: < 100 eV RMS (for PID) 
• Light Yield: 0.3 keV/MeV 
• Light detectors timing resolution: <0.17 ms (for pile-up rejection) 
• Background index:  counts/keV/kg/yr

α
Qββ

1 × 10−4

Light detectors 
• Testing of the LDs with NTD readout 

in the new baseline holder design 
was performed [2]. 

• Baseline energy resolution 70-90 eV 
RMS which complies with CUPID 
requirement 

• 10 Neganov-Luke light detectors 
were tested underground and 
demonstrated that a pile-up 
background index of  
counts/keV/kg/yr is reachable

0.5 × 10−4

CUPID-reach: 
• Same CUORE cryostat 
• The same amount of 100Mo (250 kg) 
• New technologies for background reduction 
• Background index:  counts/keV/kg/yr 
• Sensitivity:  yr

2 × 10−5

T1/2 > 2.3 × 1027

CUPID-1T [4]: 
• New cryostat  Better shielding 
• 1000kg of 100Mo 
• Background index:  counts/keV/kg/yr 
• Sensitivity:  yr

→

5 × 10−6

T1/2 > 9.2 × 1027

[1] CUPID pre-CDR. CUPID Collaboration • W.R. Armstrong (Argonne (main)) et 
al. e-Print: 1907.09376 
[2] A first test of CUPID prototypal light detectors with NTD-Ge sensors in a pulse-
tube cryostat.  CUPID Collaboration • K. Alfonso (Virginia Tech.) et al. JINST 18 
(2023) 06, P06033. DOI 10.1088/1748-0221/18/06/P06033 
[3] Optimization of the first CUPID detector module. CUPID Collaboration., 
Alfonso, K., Armatol, A. et al. Eur. Phys. J. C 82, 810 (2022). DOI: 10.1140/epjc/
s10052-022-10720-3 
[4] Toward CUPID-1T. CUPID Collaboration • A. Armatol (IRFU, Saclay) et al. e-
Print: 2203.08386

Upgrade to existing CUORE 
experiment 

• Discovery sensitivity: 
• Sensitivity:  yr 
•  = (12 - 20) meV 

• Probing the full Inverted Hierarchy 
region 

• New technology to decrease 
background and increase sensitivity

T1/2 > 1.4 × 1027

mββ

100Mo as the studied isotope 
• High  value (3034 keV) above the 

bulk of   environmental background 
• Ease of embedding into scintillating 

crystals 
• Possible enrichment 
• Good scintillator (important for particle 

identification PID) 
• Relatively fast  decay of 100Mo: 

 yr, but could be 
rejected by pulse shape

Qββ

γ

2νββ
T1/2 = 7.1 × 1018

• Gravity-assisted structure [3] (innovative 
approach with respect to CUORE and 
CUPID precursors) 

• Light detectors lying directly on the copper 
structure fixed by PTFE pieces 

• Easy and fast assembly 
• More effective cleaning

CUPID background

• Muon veto 
• Material selection, cleaning, shielding.  
• Delayed coincidence cuts (U/Th chains).  
• Lower noise, higher bandwidth electronics.  
• Improved light-detector timing resolution/

SNR 
• Total expected background: 

 counts/keV/kg/yrb = 0.97+0.21
−0.11 × 10−4

T1/2 ∝ α × ϵ ×
M × t

b × ΔE
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