

Towards a supernova-like neutrino crosssection measurement with muDAR in SBND

M. Nebot-Guinot for the SBND Collaboration

THE UNIVERSITY of EDINBURGH

Astrophysical neutrinos

- Neutrinos are excellent cosmological messengers and can play a crucial role in answering some important questions at both the smallest and largest scales of the universe.
- DUNE will be a leading neutrino telescope with a rich programme of astroparticle physics. It will be uniquely sensitive to the $^{40}\operatorname{Ar}(\nu_e, e^-)X$ electron neutrino (ν_e)
- The Booster Neutrino Beam (BNB) will provide over a million high-energy (~1 GeV) standard (mostly ν_{μ}) neutrinos per year (from decay-in-flight pions generated in proton-Beryllium collisions) to measure the un-oscillated content of the BNB with high statistics [2].

BNB

• **Muons** produced alongside these (ν_{μ}) neutrinos stop along the beamline in the hall and the absorber where they can later decay at rest providing 10-50 MeV v_e

 Current understanding of $\sigma(\mathbf{E}_{\nu})$ is limited. No v_{e} -Ar measurements in the 10-50 MeV energy range [1].

The SBND detector

Short-Baseline Near Detector (SBND) is located just 110 m from the BNB target and has 112 tons of liquid argon within the active volume of its detection systems [2].

muDAR in SBND

- SBND has a broad science goal as part of SBN program.
- The combination of a highly capable LArTPC detector technology and its proximity to the BNB target, will enable precision studies of neutrinoargon interactions.
- G4BNB + MARLEY was used to evaluate the $\nu_e \mu DAR$ production.
- The $v_e \mu DAR$ come from muons that stop (and decay) mainly at the target hall and the absorber. μ DAR ν_{e} CC in SBND
- BNB will deliver ~8x10¹⁵ μ DAR ν_e/m^2
- A total of **191 (per 10²¹ POT)** ν_e are expected in SBND.
- 161 ν_e CC plus 30 ν_e e elastic scattering.

Triggering on muDAR neutrinos

- The main background in a surface detector, as for "standard" v_e , will be cosmics.
- Currently considered standard trigger schemes were evaluated showing similar performance for μ DAR ν_e as for

Offline selection

 A preliminary selection using the Photon Detection System (PDS) to reject the large flux of cosmic background shows that requiring 500-1800 photons per v_e interaction provides a signal selection efficiency of 87% and a background rejection efficiency of 85%.

standard ν_{μ} (ν_{e})

- The $\mu DAR \nu_e$ trigger efficiency for a "OR" pairing scheme that maximises neutrino efficiency is shown.
- A threshold of 5 PE for coated PMTs and 3 PE for uncoated PMTs is used.
- Further low-energy neutrino selection using the 5-9 (9-24) avereage number of reflected (direct and reflected) photons detected by the PMTs has shown potential increase
 - to **94%** signal efficiency.
- Additional selection using the ns timing capabilities of SBND's PDS [3] and the μ DAR ν_e delay by the muon lifetime is being explored.

[1] A. Abed Abud et al. (DUNE Collaboration). Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment. Phys.Rev.D 107 (2023) 11, 112012.

[2] P. A. Machado et al. The Short-Baseline Neutrino Program at Fermilab. Annual Review of Nuclear and Particle Science 69, 363-387 (2019) [3] P. Abratenko et. al. (SBND Collaboration). Scintillation Light in SBND: Simulation, Reconstruction, and Expected Performance of the Photon Detection System. arXiv 2406.07514

This document was prepared by the SBND Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.