

Background simulations for CROSS experiment

David Cintas on behalf of the CROSS Collaboration¹

Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France cintas@ijclab.in2p3.fr

erc

1 - The CROSS experiment

Cryogenic Rare-event Observatory with Surface Sensitivity¹

- Aimed to develop new bolometric techniques for 0vBB decay search in 100 Mo (Q_{β} = 3034 keV) and 130 Te (Q_{β} = 2527 keV)
 - Discrimination of background from surface interactions by coating crystals with a thin superconductive film^{1,2}

2 - MC simulation of the experiment I

- Geant4-based Monte Carlo (MC) simulations performed to: Calculate the background index (BI) in the ROI considering known backgrounds (radioactive decays, muon-related events, etc) and assess the experiment's sensitivity (see poster of M. Buchynska, id. 388)
 - Reduce BI by applying event selections across different detectors

- Installed in a cryogenic facility³ at the Canfranc underground laboratory (LSC), in Spain
- Demonstrator will include $36 \operatorname{Li}_{2}^{100} \operatorname{MoO}_{4} (LMO)^{4}$ and 6 ¹³⁰TeO₂ (TEO)⁵ cubic (45 mm side) crystals with double read-out for particle discrimination:
 - Heat: Neutron Transmutation Doped Ge thermistors Light: Neganov-Trofimov-Luke assisted light detectors (LD) made of Ge wafers with SiO₂ coating and Al electrodes
- To tag and eliminate environmental background events:
 - Lead shielding
 - Muon veto system made of plastic scintillators • 9 sectors (4 lateral + 4 bottom + 1 top) • Each sector divided in channels: 28 for lateral, 15 for bottom and 2 for top
- Commissioning of the CROSS experiment on Dec. 2024 ^IJHEP 01 (2020) 018 ²APL 118 (2021) 184105 ³JINST 18 (2023) P12004 ⁴arXiv:2405.18980 ⁵arXiv:2406.01444
 - 3 MC simulation of the experiment II
- Experimental data (calibration with a ²³²Th source) for inputs to MC:

Information provided by the simulations:

- Energy deposited in each detector (Vetos, Crystals or LDs) Scintillation light energy added to LDs using experimentally measured Light Yield (LY)
- $\blacksquare \Delta t$ between energy deposits
- Multiplicity among detectors
- Spectra convolved with an energy resolution function ($\sigma = a + b^* \sqrt{E}$)

LY *	Bottom crystal	Top crystal
β/γ	300	200
α	50	30

*Units in eV(Light) / MeV(Heat)

Run 8

Run 9

4 - Muons and radioactive decays

Muons:

- Initial conditions obtained randomly:
 - Momentum: From angle distribution measured at LSC¹ **Energy:** From an approach for E₁ > 100 GeV aboveground, ^W then calculated underground with the rock depth²

5 - Preliminary results

 \blacksquare Event selections to minimize BI and maximize acceptance of $0\nu\beta\beta$:

- Crystal multiplicity = 1
- No coincidence in veto sectors within $\Delta t = 2 \text{ ms}$
- Event in the β/γ band: LY \in [150,450] eV(Light)/MeV(Heat)
- No energy deposits from the same decay chain within $\Delta t = 0.5$ s

Activity normalized with flux measured at LSC¹: 18.9 ± 0.8 $\mu/m^2/h$ (a) LAB2400 s

Validation with the experimentally measured rates: In each veto sector in coincidence with other sector(s) (for two different cryogenic runs) -----■ In bolometers for events with E > 10 MeV Exp: $1.44 \pm 0.22 \text{ day}^{-1}$ Sim: $1.49 \pm 0.05 \text{ day}^{-1}$

Radioactive decays:

Chains of ²²⁶Ra (down to ²¹⁰Pb)

Activities measured with — HPGe or in CUPID-Mo exp.³ $2\nu\beta\beta$ of ¹⁰⁰Mo considering the mos accurate decay rate measurement⁴ • Activity: $10.5 \pm 0.2 \text{ mBq/kg}$ Pile-up of 2νββ of ¹⁰⁰Mo⁵

		0	1	2	3 2 Ve	4 5 eto sector	6	7	89	
a1	and ²²⁸ Th in volumes surrounding crystals									
	Material	226]	Ra ((µB	q/kg) 228	Th (μBq	/kg)	
st	Cryostat screens		600	± 1	00		300	± 10	0	
	Electronic pins	(13	25 =	± 36	$() \cdot 10^{-1}$	³ (23	386 ±	: 26)	$\cdot 10^{3}$	
	Crystals (bulk) ³	().39	± 0	.06		0.57	± 0.0)7	
	Copper frame ³		25	± 1	5		33	±16		
	Lead shielding		<	120)		<	460		
	Fiberglass bars		8400)±4	400		141($) \pm 5$	0	

Rejection efficiency simulated as a step function (0 if $\Delta t < 1$ ms, 1 otherwise)

¹EPJC 79, 721 (2019) ²PDG, Cosmic Rays (2021) ³EPJC 83, 675 (2023) ⁴PRL 131, 162501 (2023) ⁵EPJC 83, 373 (2023)

6 - Strategy to reduce the BI

- Event selection optimization to reduce muon-induced background:
 - Current muon event trigger is based on coincidences of two veto modules, but 43 % of events trigger only a single veto

			4				
ts		•	•				
e D	10				 		
Ž			e e				
Φ	4						
T	I						

sector (1 MeV threshold) Rejecting coincidences between crystals and a single veto sector can reduce the BI by a factor of 2.7

Preliminary BI calculated in the ROI for ¹⁰⁰Mo (3034 keV):

We are designing an acquisition strategy to: Ensure the same energy threshold in all veto channels Avoid high trigger rate in each channel to limit dead time