Poster #96 Measurement of the Electron-Neutrino Charged-Current Cross Section on ¹²⁷I with the COHERENT NalvE Detector COHRESS

Samuel Hedges, Post-doc, LLNL,

for the COHERENT Collaboration

Goal: Measure v_e charged-current scattering on ¹²⁷I at the SNS

Solar neutrinos

- Iodine excellent target for solar neutrino detection
 - Low threshold (662 keV), large predicted cross section
- Proposed target similar to Homestake ³⁷Cl experiment^[1] Supernova neutrinos

Signal Prediction w/MARLEY

Lawrence Livermore National Laboratory

- MARLEY used w/measured of GT strength from Ref. [4]
- MARLEY agrees with existing exclusive cross section measurement, good agreement with other theoretical predictions

μ^+ decay-at-rest					
Channel	MARLEY Cross Section	Alt. Cross Section	Ref.		
$127 \mathrm{I}(\nu_e, e^-)$	$22.5^{+1.2}_{-6.5} \times 10^{-40} \text{cm}^2 \ (g_A = 1.26)$	$10.6 \times 10^{-40} \text{cm}^2 \ (g_A = 0.683)$	Ref. $[5]$		
$^{127}I(\nu_e, e^-)^{127}Xe_{bound}$	$2.3^{+0.2}_{-1.7} \times 10^{-40} \text{cm}^2 \ (g_A = 1.26)$	$2.84 \pm 0.91 (\text{stat.}) \pm 0.25 (\text{syst.}) \times 10^{-40} \text{cm}^2$	Ref. $[6]$		
$^{127}\mathrm{I}(\nu_e, e^- + n)^{126}\mathrm{Xe}$	$18.9^{+1.0}_{-5.3} \times 10^{-40} \text{cm}^2 \ (g_A = 1.26)$	—	_		
127 I $(\nu_e, e^- + 2n)^{125}$ Xe	$0.8^{+0.1}_{-0.4} \times 10^{-40} \text{cm}^2 \ (g_A = 1.26)$	—	—		
$^{127}\mathrm{I}(\nu_e, e^- + p)^{126}\mathrm{I}$	$0.5^{+0.0}_{-0.2} \times 10^{-40} \text{cm}^2 \ (g_A = 1.26)$	_	_		

Measuring charged-current scattering for 10s-of-MeV neutrinos useful for improving supernova neutrino detection modeling

Only six charged-current neutrino-nucleus scattering cross sections measured at low (<300 MeV) energies!

Neutrino Production at the SNS

SNS neutrinos

- $8.46 \times 10^{22} \nu/\text{year}^{[2]}$
- 60Hz, ~350ns FWHM
- v_e (and \overline{v}_{μ}) delayed by 2.2 µs
- Max energy of 52.8 MeV

Figure 1. Neutrino production at the SNS.

	Channel	MARLEY Cross Section	Alt. Cross Section	Ref.	
	$^{127}\mathrm{I}(\nu_{e},e^{-})$	$1.3^{+0.2}_{-0.5} \times 10^{-45} \text{cm}^2 \ (g_A = 1.26)$	$1.2^{+0.4}_{-0.4} \times 10^{-45} \text{cm}^2 \ (g_A = 1.26)$	Ref. $[4]$	
^{8}B (solar)					
	Channel	MARLEY Cross Section	Alt. Cross Section	Ref.	
	$^{127}\mathrm{I}(u_e,e^-)$	$5.1^{+0.5}_{-1.9} \times 10^{-42} \text{cm}^2 \ (g_A = 1.26)$	$4.3^{+0.6}_{-0.6} \times 10^{-42} \text{cm}^2 \ (g_A = 1.26)$	Ref. [4]	

Table 1. Comparison of MARLEY's inclusive & exclusive ¹²⁷I CC cross section predictions.

 MARLEY generates predictions for particles distribution and energies for different CC interactions possible w/NalvE

Figure 6. MARLEY prediction for observable energy distribution from CC events in Nal $v E^{[3]}$.

Figure 3. SNS and supernova neutrino energy spectra (courtesy K. Scholberg).

The NalvE Detector

Figure 4. Left: Rendering of NalvE detector^[3]. **Right**: NalvE during deployment.

- NalvE: Nal Neutrino Experiment
- 185 kg of Nal scintillator, 24 detectors, deployed to SNS in 2016
- Collected 22.8 GWhr exposure through March 2022
- Triggers on >500 keV depositions in any crystal

Figure 7. Best fit timing distribution for signals from 10-55 MeV^[3].

Figure 8. Best fit 0n and $\geq 1n$ emission cross sections^[3].

- Timing fit for signals from 10-50 MeV rejects null-hypothesis at 5.8σ
- Measured inclusive cross section: $9.2^{+2.1}_{-1.8} \times 10^{-40} \text{ cm}^2$
 - 41% lower than nominal prediction from MARLEY
- Using predicted shape of electromagnetic energy spectra from MARLEY, fit out 0n and $\geq 1n$ emission cross sections
 - $0n: 5.2^{+3.4}_{-3.1} \times 10^{-40} \text{ cm}^2$ —agrees w/existing measurement^[5]
 - $\geq 1n: 2.4^{+3.3}_{-2.4} \times 10^{-40}$ cm²—similar suppression observed by COHERENT's NIN measurement^[7]
- Additional measurements and improved nuclear modeling needed!

- Records baseline, integral of pulses
- Energy calibrated with gamma backgrounds (⁴⁰K and ²⁰⁸Tl)
- Correct for non-linearities w/Michel electrons from stopped muons
- Cosmic muons are largest background for charged-current signals (10-50 MeV ROI)—reduced with muon veto panels

Figure 5. Background spectrum before and after muon veto cut.

Several other COHERENT detectors collecting inelastic scattering data! (⁴⁰Ar, ²³²Th, D₂O, lead-glass)

References/Acknowledgements

[1] W. C. Haxton, *Phys. Rev. Lett.* **60**, 768 (1988) [2] D. Akimov, et al., *Phys. Rev. D* **106**, 032003 (2022) [3] P. An, et al., Phys. Rev. Lett. **131**, 221801 (2023) [4] M. Palarczyk, et al., *Phys. Rev. C* **59**, 500 (199)

[5] M. Hellgren & J. Suhonen, *Phys. Rev. C* 109, 035802 (2024)

[6] J. R. Distel, et al., *Phys. Rev. C* 68, 054613 (2003) [7] P. An, et al., *Phys. Rev. D* **108**, 072001 (2023)

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.